IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v154y2014icp1-15.html
   My bibliography  Save this article

Supply chain downsizing under bankruptcy: A robust optimization approach

Author

Listed:
  • Ashayeri, J.
  • Ma, N.
  • Sotirov, R.

Abstract

Research on supply chain network design has mainly pursued efficiency oriented objectives for boosting service level and profit. However, the priority of an enterprise facing bankruptcy pressure shifts to fulfill debt obligation with limited financial resources and survive downsizing. In this paper, we define a supply chain downsizing problem (SCDP) under bankruptcy as streamlining a supply chain network in order to balance a business survival and its long term profitability. We formulate a mixed integer programming (MIP) model with specific downsizing features, which maximizes the utilization of investment resources through a combined operation of demand selection and production assets reallocation. The corresponding robust counterparts of the MIP model are further developed based on robust optimization techniques for dealing with uncertainties of demands and exchange rates. We analyze and validate the proposed downsizing MIP model with a series of systematically generated test cases while its robust counterparts are studied extensively using a large generated case. The findings demonstrate the value of our approach in discovering detailed downsizing plans in magnitude and direction and provide valuable insight into how financial debt payback could be arranged, and in a unique way show managers how the reconfigured downsized network would mitigate and lead to a sustainable and higher economic value supply chain.

Suggested Citation

  • Ashayeri, J. & Ma, N. & Sotirov, R., 2014. "Supply chain downsizing under bankruptcy: A robust optimization approach," International Journal of Production Economics, Elsevier, vol. 154(C), pages 1-15.
  • Handle: RePEc:eee:proeco:v:154:y:2014:i:c:p:1-15
    DOI: 10.1016/j.ijpe.2014.04.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527314001194
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2014.04.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moschieri, Caterina & Mair, Johanna, 2005. "Research on corporate unbundling: A synthesis," IESE Research Papers D/592, IESE Business School.
    2. Melachrinoudis, Emanuel & Messac, Achille & Min, Hokey, 2005. "Consolidating a warehouse network:: A physical programming approach," International Journal of Production Economics, Elsevier, vol. 97(1), pages 1-17, July.
    3. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    4. Bruccoleri, Manfredi & Pasek, Zbigniew J. & Koren, Yoram, 2006. "Operation management in reconfigurable manufacturing systems: Reconfiguration for error handling," International Journal of Production Economics, Elsevier, vol. 100(1), pages 87-100, March.
    5. Aharon Ben-Tal & Boaz Golany & Arkadi Nemirovski & Jean-Philippe Vial, 2005. "Retailer-Supplier Flexible Commitments Contracts: A Robust Optimization Approach," Manufacturing & Service Operations Management, INFORMS, vol. 7(3), pages 248-271, February.
    6. Dimitris Bertsimas & Aurélie Thiele, 2006. "A Robust Optimization Approach to Inventory Theory," Operations Research, INFORMS, vol. 54(1), pages 150-168, February.
    7. ,, 2000. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 16(2), pages 287-299, April.
    8. Meixell, Mary J. & Gargeya, Vidyaranya B., 2005. "Global supply chain design: A literature review and critique," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 41(6), pages 531-550, November.
    9. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    10. Fluck, Zsuzsanna & Lynch, Anthony W, 1999. "Why Do Firms Merge and Then Divest? A Theory of Financial Synergy," The Journal of Business, University of Chicago Press, vol. 72(3), pages 319-346, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barbosa-Póvoa, Ana Paula & da Silva, Cátia & Carvalho, Ana, 2018. "Opportunities and challenges in sustainable supply chain: An operations research perspective," European Journal of Operational Research, Elsevier, vol. 268(2), pages 399-431.
    2. Surya Prakash & Sameer Kumar & Gunjan Soni & Vipul Jain & Ajay Pal Singh Rathore, 2020. "Closed-loop supply chain network design and modelling under risks and demand uncertainty: an integrated robust optimization approach," Annals of Operations Research, Springer, vol. 290(1), pages 837-864, July.
    3. Hou, Yunzhang & Wang, Xiaoling & Wu, Yenchun Jim & He, Peixu, 2018. "How does the trust affect the topology of supply chain network and its resilience? An agent-based approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 229-241.
    4. Viktoryia Buhayenko & Dick den Hertog, 2017. "Adjustable Robust Optimisation approach to optimise discounts for multi-period supply chain coordination under demand uncertainty," International Journal of Production Research, Taylor & Francis Journals, vol. 55(22), pages 6801-6823, November.
    5. Jahani, Hamed & Abbasi, Babak & Sheu, Jiuh-Biing & Klibi, Walid, 2024. "Supply chain network design with financial considerations: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 312(3), pages 799-839.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, N., 2014. "Optimal scope of supply chain network & operations design," Other publications TiSEM e6187708-b664-44bf-aef8-f, Tilburg University, School of Economics and Management.
    2. Hamed Mamani & Shima Nassiri & Michael R. Wagner, 2017. "Closed-Form Solutions for Robust Inventory Management," Management Science, INFORMS, vol. 63(5), pages 1625-1643, May.
    3. Oğuz Solyalı & Jean-François Cordeau & Gilbert Laporte, 2016. "The Impact of Modeling on Robust Inventory Management Under Demand Uncertainty," Management Science, INFORMS, vol. 62(4), pages 1188-1201, April.
    4. Xie, Chen & Wang, Liangquan & Yang, Chaolin, 2021. "Robust inventory management with multiple supply sources," European Journal of Operational Research, Elsevier, vol. 295(2), pages 463-474.
    5. Marcus Ang & Yun Fong Lim & Melvyn Sim, 2012. "Robust Storage Assignment in Unit-Load Warehouses," Management Science, INFORMS, vol. 58(11), pages 2114-2130, November.
    6. Jiankun Sun & Jan A. Van Mieghem, 2019. "Robust Dual Sourcing Inventory Management: Optimality of Capped Dual Index Policies and Smoothing," Manufacturing & Service Operations Management, INFORMS, vol. 21(4), pages 912-931, October.
    7. Shin, Youngchul & Lee, Sangyoon & Moon, Ilkyeong, 2021. "Robust multiperiod inventory model with a new type of buy one get one promotion: “My Own Refrigerator”," Omega, Elsevier, vol. 99(C).
    8. Wei, Cansheng & Li, Yongjian & Cai, Xiaoqiang, 2011. "Robust optimal policies of production and inventory with uncertain returns and demand," International Journal of Production Economics, Elsevier, vol. 134(2), pages 357-367, December.
    9. Oğuz Solyalı & Jean-François Cordeau & Gilbert Laporte, 2012. "Robust Inventory Routing Under Demand Uncertainty," Transportation Science, INFORMS, vol. 46(3), pages 327-340, August.
    10. Caunhye, Aakil M. & Cardin, Michel-Alexandre, 2018. "Towards more resilient integrated power grid capacity expansion: A robust optimization approach with operational flexibility," Energy Economics, Elsevier, vol. 72(C), pages 20-34.
    11. Chuen-Teck See & Melvyn Sim, 2010. "Robust Approximation to Multiperiod Inventory Management," Operations Research, INFORMS, vol. 58(3), pages 583-594, June.
    12. Roberto Gomes de Mattos & Fabricio Oliveira & Adriana Leiras & Abdon Baptista de Paula Filho & Paulo Gonçalves, 2019. "Robust optimization of the insecticide-treated bed nets procurement and distribution planning under uncertainty for malaria prevention and control," Annals of Operations Research, Springer, vol. 283(1), pages 1045-1078, December.
    13. Viktoryia Buhayenko & Dick den Hertog, 2017. "Adjustable Robust Optimisation approach to optimise discounts for multi-period supply chain coordination under demand uncertainty," International Journal of Production Research, Taylor & Francis Journals, vol. 55(22), pages 6801-6823, November.
    14. Tao Yao & Supreet Mandala & Byung Chung, 2009. "Evacuation Transportation Planning Under Uncertainty: A Robust Optimization Approach," Networks and Spatial Economics, Springer, vol. 9(2), pages 171-189, June.
    15. Cleber D. Rocco & Reinaldo Morabito, 2016. "Robust optimisation approach applied to the analysis of production / logistics and crop planning in the tomato processing industry," International Journal of Production Research, Taylor & Francis Journals, vol. 54(19), pages 5842-5861, October.
    16. Yun Fong Lim & Chen Wang, 2017. "Inventory Management Based on Target-Oriented Robust Optimization," Management Science, INFORMS, vol. 63(12), pages 4409-4427, December.
    17. Henao, César Augusto & Ferrer, Juan Carlos & Muñoz, Juan Carlos & Vera, Jorge, 2016. "Multiskilling with closed chains in a service industry: A robust optimization approach," International Journal of Production Economics, Elsevier, vol. 179(C), pages 166-178.
    18. Seunghoon Lee & Yongju Cho & Minjae Ko, 2020. "Robust Optimization Model for R&D Project Selection under Uncertainty in the Automobile Industry," Sustainability, MDPI, vol. 12(23), pages 1-15, December.
    19. Marla, Lavanya & Rikun, Alexander & Stauffer, Gautier & Pratsini, Eleni, 2020. "Robust modeling and planning: Insights from three industrial applications," Operations Research Perspectives, Elsevier, vol. 7(C).
    20. Amir Ardestani-Jaafari & Erick Delage, 2016. "Robust Optimization of Sums of Piecewise Linear Functions with Application to Inventory Problems," Operations Research, INFORMS, vol. 64(2), pages 474-494, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:154:y:2014:i:c:p:1-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.