IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v113y2008i2p748-753.html
   My bibliography  Save this article

Worst-case analysis for flow shop scheduling with a learning effect

Author

Listed:
  • Xu, Zhiyong
  • Sun, Linyan
  • Gong, Juntao

Abstract

We consider flow shop scheduling problems with a learning effect. In this model the processing times of jobs are defined as functions of their positions in a permutation. The objective is to minimize one of the three regular performance criteria, namely, the total weighted completion time, the discounted total weighted completion time, and the sum of the quadratic job completion times. We present algorithms by using the optimal permutations for the corresponding single machine scheduling problems. We also analyze the worst-case bound of our algorithms.

Suggested Citation

  • Xu, Zhiyong & Sun, Linyan & Gong, Juntao, 2008. "Worst-case analysis for flow shop scheduling with a learning effect," International Journal of Production Economics, Elsevier, vol. 113(2), pages 748-753, June.
  • Handle: RePEc:eee:proeco:v:113:y:2008:i:2:p:748-753
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(07)00330-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Teofilo Gonzalez & Sartaj Sahni, 1978. "Flowshop and Jobshop Schedules: Complexity and Approximation," Operations Research, INFORMS, vol. 26(1), pages 36-52, February.
    2. J-B Wang & Z-Q Xia, 2005. "Flow-shop scheduling with a learning effect," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(11), pages 1325-1330, November.
    3. Mosheiov, Gur, 2001. "Scheduling problems with a learning effect," European Journal of Operational Research, Elsevier, vol. 132(3), pages 687-693, August.
    4. Lee, Wen-Chiung & Wu, Chin-Chia, 2004. "Minimizing total completion time in a two-machine flowshop with a learning effect," International Journal of Production Economics, Elsevier, vol. 88(1), pages 85-93, March.
    5. G Mosheiov & J B Sidney, 2005. "Note on scheduling with general learning curves to minimize the number of tardy jobs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(1), pages 110-112, January.
    6. Biskup, Dirk, 1999. "Single-machine scheduling with learning considerations," European Journal of Operational Research, Elsevier, vol. 115(1), pages 173-178, May.
    7. A Bachman & A Janiak, 2004. "Scheduling jobs with position-dependent processing times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(3), pages 257-264, March.
    8. G Mosheiov, 2001. "Parallel machine scheduling with a learning effect," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(10), pages 1165-1169, October.
    9. Mosheiov, Gur & Sidney, Jeffrey B., 2003. "Scheduling with general job-dependent learning curves," European Journal of Operational Research, Elsevier, vol. 147(3), pages 665-670, June.
    10. Smutnicki, Czeslaw, 1998. "Some results of the worst-case analysis for flow shop scheduling," European Journal of Operational Research, Elsevier, vol. 109(1), pages 66-87, August.
    11. W. Townsend, 1978. "The Single Machine Problem with Quadratic Penalty Function of Completion Times: A Branch-and-Bound Solution," Management Science, INFORMS, vol. 24(5), pages 530-534, January.
    12. T.C. Cheng & Guoqing Wang, 2000. "Single Machine Scheduling with Learning Effect Considerations," Annals of Operations Research, Springer, vol. 98(1), pages 273-290, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji-Bo Wang & Ming-Zheng Wang, 2011. "Worst-case behavior of simple sequencing rules in flow shop scheduling with general position-dependent learning effects," Annals of Operations Research, Springer, vol. 191(1), pages 155-169, November.
    2. Li, Gang & Wang, Xiao-Yuan & Wang, Ji-Bo & Sun, Lin-Yan, 2013. "Worst case analysis of flow shop scheduling problems with a time-dependent learning effect," International Journal of Production Economics, Elsevier, vol. 142(1), pages 98-104.
    3. Bai, Danyu & Tang, Mengqian & Zhang, Zhi-Hai & Santibanez-Gonzalez, Ernesto DR, 2018. "Flow shop learning effect scheduling problem with release dates," Omega, Elsevier, vol. 78(C), pages 21-38.
    4. Lee, Wen-Chiung & Chung, Yu-Hsiang, 2013. "Permutation flowshop scheduling to minimize the total tardiness with learning effects," International Journal of Production Economics, Elsevier, vol. 141(1), pages 327-334.
    5. Lin-Hui Sun & Kai Cui & Ju-Hong Chen & Jun Wang & Xian-Chen He, 2013. "Research on permutation flow shop scheduling problems with general position-dependent learning effects," Annals of Operations Research, Springer, vol. 211(1), pages 473-480, December.
    6. Jian-You Xu & Win-Chin Lin & Yu-Wei Chang & Yu-Hsiang Chung & Juin-Han Chen & Chin-Chia Wu, 2023. "A Two-Machine Learning Date Flow-Shop Scheduling Problem with Heuristics and Population-Based GA to Minimize the Makespan," Mathematics, MDPI, vol. 11(19), pages 1-21, September.
    7. Sun, Lin-Hui & Sun, Lin-Yan & Wang, Ming-Zheng & Wang, Ji-Bo, 2012. "Flow shop makespan minimization scheduling with deteriorating jobs under dominating machines," International Journal of Production Economics, Elsevier, vol. 138(1), pages 195-200.
    8. Lin-Hui Sun & Kai Cui & Ju-Hong Chen & Jun Wang & Xian-Chen He, 2013. "Some results of the worst-case analysis for flow shop scheduling with a learning effect," Annals of Operations Research, Springer, vol. 211(1), pages 481-490, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji-Bo Wang & Ming-Zheng Wang, 2011. "Worst-case behavior of simple sequencing rules in flow shop scheduling with general position-dependent learning effects," Annals of Operations Research, Springer, vol. 191(1), pages 155-169, November.
    2. Biskup, Dirk, 2008. "A state-of-the-art review on scheduling with learning effects," European Journal of Operational Research, Elsevier, vol. 188(2), pages 315-329, July.
    3. Wang, J.-B. & Ng, C.T. & Cheng, T.C.E. & Liu, L.L., 2008. "Single-machine scheduling with a time-dependent learning effect," International Journal of Production Economics, Elsevier, vol. 111(2), pages 802-811, February.
    4. Wang, Ji-Bo, 2007. "Single-machine scheduling problems with the effects of learning and deterioration," Omega, Elsevier, vol. 35(4), pages 397-402, August.
    5. J-B Wang & Z-Q Xia, 2005. "Flow-shop scheduling with a learning effect," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(11), pages 1325-1330, November.
    6. J-B Wang, 2010. "Single-machine scheduling with a sum-of-actual-processing-time-based learning effect," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 172-177, January.
    7. Li, Gang & Wang, Xiao-Yuan & Wang, Ji-Bo & Sun, Lin-Yan, 2013. "Worst case analysis of flow shop scheduling problems with a time-dependent learning effect," International Journal of Production Economics, Elsevier, vol. 142(1), pages 98-104.
    8. Lee, Wen-Chiung & Wu, Chin-Chia & Hsu, Peng-Hsiang, 2010. "A single-machine learning effect scheduling problem with release times," Omega, Elsevier, vol. 38(1-2), pages 3-11, February.
    9. Chang, Pei-Chann & Chen, Shih-Hsin & Mani, V., 2009. "A note on due-date assignment and single machine scheduling with a learning/aging effect," International Journal of Production Economics, Elsevier, vol. 117(1), pages 142-149, January.
    10. Xingong Zhang & Guangle Yan & Wanzhen Huang & Guochun Tang, 2011. "Single-machine scheduling problems with time and position dependent processing times," Annals of Operations Research, Springer, vol. 186(1), pages 345-356, June.
    11. Qian, Jin & Lin, Hexiang & Kong, Yufeng & Wang, Yuansong, 2020. "Tri-criteria single machine scheduling model with release times and learning factor," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    12. Yang, Wen-Hua & Chand, Suresh, 2008. "Learning and forgetting effects on a group scheduling problem," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1033-1044, June.
    13. Gara-Ali, Ahmed & Finke, Gerd & Espinouse, Marie-Laure, 2016. "Parallel-machine scheduling with maintenance: Praising the assignment problem," European Journal of Operational Research, Elsevier, vol. 252(1), pages 90-97.
    14. Dar-Li Yang & Wen-Hung Kuo, 2009. "Single-machine scheduling with both deterioration and learning effects," Annals of Operations Research, Springer, vol. 172(1), pages 315-327, November.
    15. Kuo, Wen-Hung & Yang, Dar-Li, 2006. "Minimizing the total completion time in a single-machine scheduling problem with a time-dependent learning effect," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1184-1190, October.
    16. Rustogi, Kabir & Strusevich, Vitaly A., 2012. "Simple matching vs linear assignment in scheduling models with positional effects: A critical review," European Journal of Operational Research, Elsevier, vol. 222(3), pages 393-407.
    17. Heuser, Patricia & Tauer, Björn, 2023. "Single-machine scheduling with product category-based learning and forgetting effects," Omega, Elsevier, vol. 115(C).
    18. Bai, Danyu & Tang, Mengqian & Zhang, Zhi-Hai & Santibanez-Gonzalez, Ernesto DR, 2018. "Flow shop learning effect scheduling problem with release dates," Omega, Elsevier, vol. 78(C), pages 21-38.
    19. Radosław Rudek, 2012. "Scheduling problems with position dependent job processing times: computational complexity results," Annals of Operations Research, Springer, vol. 196(1), pages 491-516, July.
    20. Finke, Gerd & Gara-Ali, Ahmed & Espinouse, Marie-Laure & Jost, Vincent & Moncel, Julien, 2017. "Unified matrix approach to solve production-maintenance problems on a single machine," Omega, Elsevier, vol. 66(PA), pages 140-146.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:113:y:2008:i:2:p:748-753. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.