IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v94y1978i1p55-70.html
   My bibliography  Save this article

Theory of symmetry in the quantum mechanics of infinite systems

Author

Listed:
  • Sen, R.N.

Abstract

The isotropic bundle representations of the Galilei group and its central extension are classified, and the natural cross-section, action of the group on the base manifold and the canonical cocyle are determined for all cases. Projective bundle representations of the Galilei group are defined and the extension of Bargmann's superselection rule is established. Coordinate transformations on the base space are discussed in all cases, and the notion of generalized coordinate transformations is introduced. It is then shown that the bundle representations being considered do not violate the principle of Galilean relativity as it is commonly understood. The physical interpretation of the irreducible and some reducible representations is discussed. It is found that some bundle representations might correspond to objects which can act as sources or sinks of linear and/or angular momentum.

Suggested Citation

  • Sen, R.N., 1978. "Theory of symmetry in the quantum mechanics of infinite systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 94(1), pages 55-70.
  • Handle: RePEc:eee:phsmap:v:94:y:1978:i:1:p:55-70
    DOI: 10.1016/0378-4371(78)90127-9
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0378437178901279
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/0378-4371(78)90127-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:94:y:1978:i:1:p:55-70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.