IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v87y1977i2p302-330.html
   My bibliography  Save this article

On dielectric and magnetic relaxation phenomena and vectorial internal degrees of freedom in thermodynamics

Author

Listed:
  • Kluitenberg, G.A.

Abstract

It has been shown by the author in a previous paper that thermodynamic vectorial internal degrees of freedom which influence the polarization or the magnetization of a medium may give rise to dielectric or magnetic relaxation phenomena. Snoek's equation for magnetic relaxation phenomena was derived and it was shown that Debye's theory for dielectric after-effects in polar liquids is a special case of the developed theory. In this paper it is shown that if Z is some vectorial internal degree of freedom which influences the polarization a new internal degree of freedom bip(int) may be defined which is a function of biZ, which may replace biZ as vectorial internal degree of freedom and which is a part of the total specific polarization. Furthermore, p(int) may be introduced in such a way that the remaining part of the polarization, p(el) (defined by p(el)=p− pint), where p is the total polarization per unit of mass), has the property that it vanishes for all values of p(int) if the medium is in a state where the electric field E and the mechanical elastic stresses vanish and the temperature of the medium equals some reference temperature. If the equations of state are linearized the latter result implies for an isotropic medium E=ρa(0,0)(bdp)p(el), where ρ is the mass density and a(0,0)(P) a constant. On the other hand p(int) satifies a relaxation equation. It is seen that the use of p(int) as an internal degree of freedom is of great advantage. This is connected with the fact that p(int) is a measurable quantity in contradistinction to an arbitrary “hidden” vectorial internal degree of freedom. Analogous results may be obtained for magnetic after-effects.

Suggested Citation

  • Kluitenberg, G.A., 1977. "On dielectric and magnetic relaxation phenomena and vectorial internal degrees of freedom in thermodynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 87(2), pages 302-330.
  • Handle: RePEc:eee:phsmap:v:87:y:1977:i:2:p:302-330
    DOI: 10.1016/0378-4371(77)90019-X
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/037843717790019X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/0378-4371(77)90019-X?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:87:y:1977:i:2:p:302-330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.