IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v83y1976i2p301-316.html
   My bibliography  Save this article

The complete system of algebraic invariants for the sixteen-vertex model

Author

Listed:
  • Gaaff, A.
  • Hijmans, J.

Abstract

In a previous paper, the partition function of the 16-vertex model was shown to be invariant under a group of linear transformations in the space of the vertex weights. According to a theorem by Hilbert, every algebraic invariant such as the partition function for a finite lattice can be expressed algebraically in terms of a finite set of basic algebraic invariants, which are sums of products of the vertex weights. We construct this set by analysing the structural properties of the transformation group (the direct product of two three-dimensional orthogonal groups). The basic set is found to consist of 21 invariants, ranging from a linear invariant up to invariants of the ninth degree. In particular cases, notably the (general or the symmetric) eight-vertex model, the six-vertex model and the free-fermion model, several invariants vanish and a number of additional algebraic relations between the basic invariants are obtained.

Suggested Citation

  • Gaaff, A. & Hijmans, J., 1976. "The complete system of algebraic invariants for the sixteen-vertex model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 83(2), pages 301-316.
  • Handle: RePEc:eee:phsmap:v:83:y:1976:i:2:p:301-316
    DOI: 10.1016/0378-4371(76)90038-8
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0378437176900388
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/0378-4371(76)90038-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gaaff, A. & Hijmans, J., 1975. "Symmetry relations in the sixteen-vertex model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 80(2), pages 149-171.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Colpa, J.H.P., 1984. "On the classification of the homogeneous 16-vertex models on a square lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 125(2), pages 442-464.
    2. Hijmans, J. & Schram, H.M., 1983. "On the bifurcations occuring in the parameter space of the sixteen vertex model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 121(3), pages 479-512.
    3. Šamaj, L. & Kolesík, M., 1992. "Mapping of the symmetric vertex model onto the Ising model for an arbitrary lattice coordination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 182(3), pages 455-466.
    4. Kolesik, Miroslav & Suzuki, Masuo, 1995. "Critical exponents of the 3D antiferromagnetic three-state Potts model using the coherent-anomaly method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 216(4), pages 469-477.
    5. Colpa, J.H.P., 1986. "Diagonalization of the quadratic boson Hamiltonian with zero modes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 134(2), pages 377-416.
    6. Gaaff, A. & Hijmans, J., 1979. "Bifurcation analysis of the sixteen-vertex model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 97(2), pages 244-272.
    7. Kolesik, Miroslav & Suzuki, Masuo, 1995. "Accurate estimates of 3D Ising critical exponents using the coherent-anomaly method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 215(1), pages 138-151.
    8. Hijmans, J. & Schram, H.M., 1984. "On the bifurcations occurring in the parameter space of the sixteen vertex model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 125(1), pages 25-57.
    9. Gaaff, A. & Hijmans, J., 1976. "The complete system of algebraic invariants for the sixteen-vertex model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 83(2), pages 317-338.
    10. Colpa, J.H.P., 1984. "On the classification of the homogeneous 16-vertex models on a square lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 125(2), pages 425-441.
    11. Kolesík, M. & S̆amaj, L., 1991. "On correlation functions of two-state vertex models on the honeycomb lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 179(1), pages 145-157.
    12. Gaaff, A. & Hijmans, J., 1978. "Interpretation of the symmetry group of the homogeneous 16-vertex model in terms of Lorentz similarity transformations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 94(2), pages 192-210.
    13. Hijmans, J., 1985. "Simplified bifurcation analysis of the sixteen vertex model, based on the standard representation of equivalence classes of models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 130(1), pages 57-87.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:83:y:1976:i:2:p:301-316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.