IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v666y2025ics0378437125001840.html
   My bibliography  Save this article

Robust analysis of spatio-temporal inequality with Inverse entropy

Author

Listed:
  • Ruiz Reina, Miguel Ángel

Abstract

This study introduces Inverse entropy, a novel metric for spatio-temporal inequality that extends traditional measures such as Shannon entropy and the Gini coefficient. Unlike dispersion-based indices, it focuses on temporal concentration and employs a decomposition framework to disentangle structural, transversal, and allocative components, offering deeper insights into inequality dynamics. Monte Carlo simulations validate its robustness across skewed and noisy distributions, demonstrating superior sensitivity, monotonicity, and scalability compared to traditional inequality and concentration measures. An empirical analysis of 106 Spanish tourism destinations (2005–2019) reveals significant temporal disparities, with transversal components emerging as key drivers of seasonal demand variability. The results provide actionable insights for policymakers, addressing structural dependencies and allocative inefficiencies to optimise resource allocation. The computational implementation ensures reproducibility using R, enabling large-scale analyses. Beyond tourism, Inverse entropy is applicable to energy demand, transportation, and retail forecasting.

Suggested Citation

  • Ruiz Reina, Miguel Ángel, 2025. "Robust analysis of spatio-temporal inequality with Inverse entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 666(C).
  • Handle: RePEc:eee:phsmap:v:666:y:2025:i:c:s0378437125001840
    DOI: 10.1016/j.physa.2025.130532
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437125001840
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2025.130532?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:666:y:2025:i:c:s0378437125001840. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.