IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v666y2025ics0378437125001682.html
   My bibliography  Save this article

Microcanonical Monte Carlo simulation of opinion dynamics under the influence of mass media

Author

Listed:
  • Navarrete, Yasmín
  • Femenías, Carlos
  • Davis, Sergio
  • Loyola, Claudia

Abstract

The formation of large social groups having uniform opinions influenced by mass media is currently an important topic in the social sciences. In this work, we explore and extend an off-lattice, two-dimensional Potts model (Eur. Phys. J. B 87, 78 [2014]) that describes the formation and dynamics of opinions in social groups according to individual consequence and agreement between neighbors. This model was originally obtained by the application of the maximum entropy principle, a general method in statistical inference, and using the same methodology we have now included the influence of mass media as a constant external field. By means of microcanonical Monte Carlo Metropolis simulations on a setup with two regions with opposing external influences, we have shown the presence of metastable states associated to the formation of clusters aligned with the locally imposed opinion. Our results suggest that, for some values of the total energy of the system, only a single cluster with a uniform opinion survives, thus the presence of two large, opposing groups is not a thermodynamically stable configuration.

Suggested Citation

  • Navarrete, Yasmín & Femenías, Carlos & Davis, Sergio & Loyola, Claudia, 2025. "Microcanonical Monte Carlo simulation of opinion dynamics under the influence of mass media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 666(C).
  • Handle: RePEc:eee:phsmap:v:666:y:2025:i:c:s0378437125001682
    DOI: 10.1016/j.physa.2025.130516
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437125001682
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2025.130516?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:666:y:2025:i:c:s0378437125001682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.