IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v665y2025ics0378437125001633.html
   My bibliography  Save this article

Co-authorship prediction method based on degree of gravity and article keywords similarity

Author

Listed:
  • Yuliansyah, Herman
  • Othman, Zulaiha Ali
  • Bakar, Azuraliza Abu

Abstract

Link prediction is a technique for predicting future relationships among candidate node pairs. The co-authorship prediction measures the candidate by examining the unobserved node pairs using the link prediction technique. Previous studies have proposed co-authorship prediction and focused solely on using a topology or content articles to conduct the co-authorship prediction. However, many unobserved node pairs hinder the co-authorship prediction process. A new co-authorship prediction method is required by considering both topological information and research interest due to the authors collaborating to publish scientific papers based on research similarities, although still considering the network topology. The objective of this research is to propose a co-authorship prediction method based on a two-phase process: pruning candidate node pairs based on article content similarities to avoid a large number of candidate co-authors and predicting potential co-authors based on the Degree of Gravity for Link Prediction (DGLP) method. The proposed method is examined using the real-world co-authorship network and assessed using the area under the curve and the paired samples t-test to show a significant improvement. The experiment results show that combining DGLP, keyword extraction, and keyword similarities can help obtain the best performance and outperform the benchmark methods for co-authorship prediction in the unweighted network.

Suggested Citation

  • Yuliansyah, Herman & Othman, Zulaiha Ali & Bakar, Azuraliza Abu, 2025. "Co-authorship prediction method based on degree of gravity and article keywords similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 665(C).
  • Handle: RePEc:eee:phsmap:v:665:y:2025:i:c:s0378437125001633
    DOI: 10.1016/j.physa.2025.130511
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437125001633
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2025.130511?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:665:y:2025:i:c:s0378437125001633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.