IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v665y2025ics0378437125001517.html
   My bibliography  Save this article

Deterministic risk modelling: Newtonian dynamics in capital flow

Author

Listed:
  • Szczypińska, Anna
  • Piotrowski, Edward W.
  • Makowski, Marcin

Abstract

Risk is a universal concept that is applied in many scientific disciplines. We demonstrate the relationship between the risk associated with the dynamics of capital flows and a specific class of problems from classical mechanics, which rely solely on the deterministic nature of the constructed models. This approach differs from the currently dominant one, where risk is mainly associated with probabilistic methods of modelling Brownian motion. We point out the safest form of loan repayment while considering profit maximization. We derive formulas that allow us to calculate the value of capital at any discrete moments in time, given lower and upper interest rate bounds. We use matrix rates and Newton’s principles to analyse capital dynamics in both continuous and discrete systems. We illustrate the proposed theory with a practical example: a measure of the efficiency of buying and selling transactions.

Suggested Citation

  • Szczypińska, Anna & Piotrowski, Edward W. & Makowski, Marcin, 2025. "Deterministic risk modelling: Newtonian dynamics in capital flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 665(C).
  • Handle: RePEc:eee:phsmap:v:665:y:2025:i:c:s0378437125001517
    DOI: 10.1016/j.physa.2025.130499
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437125001517
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2025.130499?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:665:y:2025:i:c:s0378437125001517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.