IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v664y2025ics037843712500113x.html
   My bibliography  Save this article

Beyond traditional metrics: Redefining urban metro network vulnerability with redundancy assessment

Author

Listed:
  • Dehaghani, Kaveh Rezvani
  • Morency, Catherine

Abstract

Previous studies have predominantly analyzed Urban Metro Network (UMN) vulnerability from topological and functional perspectives, often neglecting the impact of disruptions on alternative route availability. This research introduces a novel redundancy-based vulnerability analysis, assessing the reduction in travel alternatives following disruptions. The Montreal UMN is used as a case study, utilizing General Transit Feed Specification (GTFS) data from the Montreal Transit Authority and trip data from the 2018 Montreal Origin-Destination survey. Using the open-source platform Transition, we simulate shortest transit routes for each trip, generate alternative routes, and compute travel times. We define one targeted and three random failure scenarios, selected from 100 simulations, to evaluate network vulnerability to various disruption types. Indicators are formulated, calculated, and compared across all scenarios. Each failure scenario involves a sequence of consecutive metro station disruptions, leading to complete network shutdown. Findings reveal that the metro network is significantly more vulnerable to targeted disruptions than random ones. Among all indicators, functional ones related to users' travel time show greater sensitivity to disruption type, be it targeted or random. Vulnerability indicators exhibit the most substantial changes during initial disruptions, highlighting their critical impact. Although traditional approaches (topological and functional) show a direct relationship between the number of disruptions and changes in vulnerability indicators, this is not true for the redundancy-based vulnerability indicator. In this case, the primary determinants are the locations of disrupted stations and the network's geometry, rather than the number of disruptions.

Suggested Citation

  • Dehaghani, Kaveh Rezvani & Morency, Catherine, 2025. "Beyond traditional metrics: Redefining urban metro network vulnerability with redundancy assessment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 664(C).
  • Handle: RePEc:eee:phsmap:v:664:y:2025:i:c:s037843712500113x
    DOI: 10.1016/j.physa.2025.130461
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712500113X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2025.130461?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:664:y:2025:i:c:s037843712500113x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.