IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v662y2025ics0378437125000780.html
   My bibliography  Save this article

The effect of rescue behavior for crowd evacuation via modified social force model

Author

Listed:
  • Liu, Zhe
  • Qiu, Bing
  • Kuang, Hua
  • Li, Xingli

Abstract

The modeling of rescue behavior is an important topic in pedestrian evacuation dynamics. In order to study rescue behavior for the injured pedestrian, a modified social force model is proposed to simulate crowd evacuation through considering the rescue attraction force and different movement mechanisms (e.g., other pedestrians’ avoidance of the rescuers and the injured individuals during the rescue process). The interaction rules between the rescuer and the injured individual are established to describe rescue behavior. A comparison is conducted on the impacts of with or without rescue behavior on evacuation efficiency. The influences of the position distributions and the number of rescuers, the avoidance strength, the rescue time and the distribution of injured pedestrian on evacuation dynamics in a hall are investigated. And the typical spatiotemporal dynamic characteristic during the evacuation process is also discussed. The simulation results show that considering the rescue behavior will reduce the total evacuation time evidently. The evacuation efficiency is the highest when the rescue is located in the center of the hall wall and away from the exit. Furthermore, the shorter the rescue time, the higher the evacuation efficiency, and the avoidance strength plays an important role on evacuation efficiency. In particular, an interesting self-organization phenomenon that the formation of a local rescue channel between the rescuer and the injured individual is discovered. Comparing to one rescuer, multiple rescuers can effectively improve evacuation efficiency. This study can provide a theoretical guidance for fast and safe rescue behavior in emergency situations.

Suggested Citation

  • Liu, Zhe & Qiu, Bing & Kuang, Hua & Li, Xingli, 2025. "The effect of rescue behavior for crowd evacuation via modified social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 662(C).
  • Handle: RePEc:eee:phsmap:v:662:y:2025:i:c:s0378437125000780
    DOI: 10.1016/j.physa.2025.130426
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437125000780
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2025.130426?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:662:y:2025:i:c:s0378437125000780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.