IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v662y2025ics0378437125000032.html
   My bibliography  Save this article

Complex network-based framework for flow pattern identification in vertical upward oil–water two-phase flow

Author

Listed:
  • Cui, Xiaofeng
  • He, Yuling
  • Li, Mengyu
  • Cao, Weidong
  • Gao, Zhongke

Abstract

The investigation of oil–water two-phase flow in vertical pipelines holds significant research implications for a multitude of industrial applications, including oil production, chemical processing, and wastewater treatment. This research introduces a complex network-based framework for analyzing multi-node measurement signals from an eight-electrode cyclic excitation conductivity sensor, aimed at recognizing intricate flow patterns in vertical upward oil–water two-phase flow. Initially, experiments on vertical upward oil–water two-phase flow were conducted in a 20 mm diameter pipeline, where flow dynamics were recorded using the aforementioned sensor. During the experiments, flow patterns captured by a high-speed camera included dispersed oil-in-water slug flow (D OS/W), dispersed oil-in-water flow (D O/W), and very fine dispersed oil-in-water flow (VFD O/W). Subsequently, the multivariate pseudo-Wigner–Ville distribution time–frequency representation (PWVD TFR) was employed to characterize the flow behavior from both energy and frequency perspectives. Finally, the sensor’s measurement nodes were treated as nodes in a network, and the mutual information between each time series was calculated to construct a complex network; network metrics were then computed to quantitatively characterize the network topology. The findings indicate that our method can effectively integrate multi-channel measurement signals and reveal the evolution of complex flow behaviors.

Suggested Citation

  • Cui, Xiaofeng & He, Yuling & Li, Mengyu & Cao, Weidong & Gao, Zhongke, 2025. "Complex network-based framework for flow pattern identification in vertical upward oil–water two-phase flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 662(C).
  • Handle: RePEc:eee:phsmap:v:662:y:2025:i:c:s0378437125000032
    DOI: 10.1016/j.physa.2025.130351
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437125000032
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2025.130351?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:662:y:2025:i:c:s0378437125000032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.