IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v661y2025ics037843712500069x.html
   My bibliography  Save this article

Long-range correlations in cryptocurrency markets: A multi-scale DFA approach

Author

Listed:
  • Bui, Huy Quoc
  • Schinckus, Christophe
  • Al-Jaifi, Hamdan

Abstract

This article investigates the long-range correlations within the cryptocurrency market by investigating the Hurst exponents across multiple time scales for the log-returns of the top five cryptocurrencies (capturing over 70 % of the market capitalization) between 2017 and 2023. The study uncovers several notable insights. An overall analysis indicates the presence of persistent long-range correlations in four out of five cryptocurrencies, with only XRP displaying characteristics of a random walk. A closer look differentiates the dynamics between short-term and long-term scales, revealing that ETH uniquely maintaining a strong persistence in both, unlike the other cryptocurrencies, which show varying behaviors across these scales. Additionally, ETH and XRP show persistent effects in times of market volatility. This reflects temporal patterns within cryptocurrency markets, enhancing the understanding of market behaviour across varying conditions and timescales. Our findings suggest opportunities for using Hurst exponents as tools to monitor trend continuation or reversal, develop asset-specific strategies, and detect systemic risks during extreme market conditions, offering valuable insights for traders and policymakers navigating the cryptocurrency market's inherent volatility

Suggested Citation

  • Bui, Huy Quoc & Schinckus, Christophe & Al-Jaifi, Hamdan, 2025. "Long-range correlations in cryptocurrency markets: A multi-scale DFA approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 661(C).
  • Handle: RePEc:eee:phsmap:v:661:y:2025:i:c:s037843712500069x
    DOI: 10.1016/j.physa.2025.130417
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712500069X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2025.130417?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:661:y:2025:i:c:s037843712500069x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.