IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v661y2025ics0378437125000585.html
   My bibliography  Save this article

Line graph neural networks for link weight prediction

Author

Listed:
  • Liang, Jinbi
  • Pu, Cunlai
  • Shu, Xiangbo
  • Xia, Yongxiang
  • Xia, Chengyi

Abstract

In real-world networks, predicting the weight (strength) of links is as crucial as predicting the existence of the links themselves. Previous studies have primarily used shallow graph features for link weight prediction, limiting the prediction performance. In this paper, we propose a new link weight prediction method, namely Line Graph Neural Networks for Link Weight Prediction (LGLWP), which learns intrinsic graph features through deep learning. In our method, we first extract the enclosing subgraph around a target link and then employ a weighted graph labeling algorithm to label the subgraph nodes. Next, we transform the subgraph into the line graph and apply graph convolutional neural networks to learn the node embeddings in the line graph, which can represent the links in the original subgraph. Finally, the node embeddings are fed into a fully-connected neural network to predict the weight of the target link, treated as a regression problem. Our method directly learns link features, surpassing previous methods that splice node features for link weight prediction. Experimental results on six network datasets of various sizes and types demonstrate that our method outperforms state-of-the-art methods.

Suggested Citation

  • Liang, Jinbi & Pu, Cunlai & Shu, Xiangbo & Xia, Yongxiang & Xia, Chengyi, 2025. "Line graph neural networks for link weight prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 661(C).
  • Handle: RePEc:eee:phsmap:v:661:y:2025:i:c:s0378437125000585
    DOI: 10.1016/j.physa.2025.130406
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437125000585
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2025.130406?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:661:y:2025:i:c:s0378437125000585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.