IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v661y2025ics0378437125000457.html
   My bibliography  Save this article

How left-turning vehicles deal with conflicts at intersections: A driving behavior model based on relative motion risk quantification

Author

Listed:
  • Hua, Jun
  • Li, Bin
  • Wang, Lin
  • Lu, Guangquan

Abstract

Unprotected left turns at intersections in right-hand traffic are a critical factor affecting traffic safety. Traditional risk assessment indicators, which typically rely on vehicle relative positions, fall short in supporting yield/go decisions by left-turning drivers across different types of conflicts, and the corresponding driving behavior models struggle to capture the underlying behavioral mechanisms. To address these limitations, this paper introduces an improved risk assessment indicator based on risk field theory. By quantifying the relative motion risk between interactive vehicles, the proposed indicator offers a unified standard for intuitively determining whether a conflict has been resolved. Building on this, a Perception-decision-action behavioral framework, grounded in the preview-follower theory and risk homeostasis theory, is employed to model decision-making behaviors. This behavioral mechanism-driven model is validated through numerical simulations of vehicle trajectories, achieving a 92.59 % accuracy rate in replicating the decision-making behavior of left-turning vehicles, comparable to the performance of previous data-driven classification models. Furthermore, several cases are analyzed and discussed under different risk preferences and preview times, demonstrating that the model has potential for personalized trajectory planning. Overall, this paper provides a valuable reference model for enhancing intersection safety and advancing trajectory planning in autonomous driving systems.

Suggested Citation

  • Hua, Jun & Li, Bin & Wang, Lin & Lu, Guangquan, 2025. "How left-turning vehicles deal with conflicts at intersections: A driving behavior model based on relative motion risk quantification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 661(C).
  • Handle: RePEc:eee:phsmap:v:661:y:2025:i:c:s0378437125000457
    DOI: 10.1016/j.physa.2025.130393
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437125000457
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2025.130393?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:661:y:2025:i:c:s0378437125000457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.