IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v660y2025ics0378437125000123.html
   My bibliography  Save this article

Modeling competition for space: Emergent inefficiency and inequality due to spatial self-organization among a group of crowd-avoiding agents

Author

Listed:
  • Mathew, Ann Mary
  • Sasidevan, V.

Abstract

Competition for a limited resource is the hallmark of many complex systems, and often, that resource turns out to be the physical space itself. In this work, we study a novel model designed to elucidate the dynamics and emergence in complex adaptive systems in which agents compete for some spatially spread resource. Specifically, in the model, the dynamics result from the agents trying to position themselves in the quest to avoid physical crowding experienced locally. We characterize in detail the dependence of the emergent behavior of the model on the population density of the system and the individual-level agent traits such as the extent of space an agent considers as her neighborhood, the limit of occupation density one tolerates within that neighborhood, and the information accessibility of the agents about neighborhood occupancy. We show that inefficiency in utilizing physical space shows transition at a specific density and peaks at another distinct density. Furthermore, we demonstrate that the variation of inefficiency relative to the information accessible to the agents exhibits contrasting behavior above and below this second density. We also look into the inequality of resource sharing in the model and show that although inefficiency can be a non-monotonic function of information depending upon the parameters of the model, inequality, in general, decreases with information. Our study sheds light on the role of competition, spatial constraints, and agent traits within complex adaptive systems, offering insights into their emergent behaviors.

Suggested Citation

  • Mathew, Ann Mary & Sasidevan, V., 2025. "Modeling competition for space: Emergent inefficiency and inequality due to spatial self-organization among a group of crowd-avoiding agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 660(C).
  • Handle: RePEc:eee:phsmap:v:660:y:2025:i:c:s0378437125000123
    DOI: 10.1016/j.physa.2025.130360
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437125000123
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2025.130360?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:660:y:2025:i:c:s0378437125000123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.