IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v659y2025ics0378437125000184.html
   My bibliography  Save this article

Macro guidance-Micro avoidance model for on-site personnel emergency evacuation strategy in nuclear power plants under fear psychology

Author

Listed:
  • Nie, Zelin
  • Guan, Yuxin
  • Cheng, Wei
  • Chen, Lingxiu
  • Xing, Ji
  • Chen, Xuefeng
  • Xue, Na
  • Yan, Jin
  • Deng, Wei
  • Cao, Qun

Abstract

At present, the measures for on-site emergency in nuclear power plants are not universal and flexible, and are not applicable to all accident scenarios. To address the problem, this paper proposes a Macro guidance-Micro avoidance model combined improved Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and Cellular Automata (CA) model for on-site emergency. To overcome the issue of “repeated turnback” in CA micro-simulation, the improved NSGA-II algorithm is introduced to guide macro evacuation directions. For addressing uncertainty in the effects of radiation field, psychological factors, and evacuation behavior on evacuation efficiency in nuclear emergency scenarios, CA is used to simulate and analyze the influence rule of radiation field, herd behavior, information transmission, and physical differences on evacuation time. Finally, by selecting appropriate exit inside nuclear power plant, this model reasonably estimates evacuation time, and ensures timely response of off-site emergency vehicles during the nuclear emergency process. Through the simulation analysis of evacuation process of on-site personnel based on radionuclide diffusion, radiation hazards, crowd characteristics, and psychological changes can be considered, this approach facilitates the planning of safe evacuation exits and allows for more accurate evacuation time estimation, supporting subsequent off-site evacuation efforts.

Suggested Citation

  • Nie, Zelin & Guan, Yuxin & Cheng, Wei & Chen, Lingxiu & Xing, Ji & Chen, Xuefeng & Xue, Na & Yan, Jin & Deng, Wei & Cao, Qun, 2025. "Macro guidance-Micro avoidance model for on-site personnel emergency evacuation strategy in nuclear power plants under fear psychology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 659(C).
  • Handle: RePEc:eee:phsmap:v:659:y:2025:i:c:s0378437125000184
    DOI: 10.1016/j.physa.2025.130366
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437125000184
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2025.130366?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:659:y:2025:i:c:s0378437125000184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.