IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v659y2025ics0378437124008483.html
   My bibliography  Save this article

Dynamical swirl structures powered by microswimmers in active nematics

Author

Listed:
  • Mondal, Partha Sarathi
  • Mishra, Pawan Kumar
  • Vicsek, Tamás
  • Mishra, Shradha

Abstract

Active nematics, in their pure form, have demonstrated a plethora of dynamic and steady-state behaviors, including large-scale dynamic structures, collective flows, and intricate multi-spatial temporal dynamics. This complexity further increases in the presence of external polar agents. We investigate active nematics interspersed with polar microswimmers, akin to active apolar cells infused with active impurities (microswimmers). Our comprehensive numerical study reveals that varying the microswimmers’ motility induces a novel spatiotemporal state in the active nematics backdrop. This state is marked by macroscopic swirl-like structures and a reduction in the overall order of the active nematics. Interestingly, this state emerges at intermediate motility levels, where microswimmers form local clusters and exhibit coherent motion. However, at higher motility levels, the swirls become less coherent, and microswimmer clustering intensifies. We show that the effect of the polar microswimmers on active nematics can be interpreted as a spatiotemporally correlated colored noise on active nematics, which promotes bend instability in active nematics, leading to the observed swirling dynamics. Our findings indicate that the spatiotemporal states are highly sensitive to the microswimmers’ motility, offering potential avenues for pathogen identification based on known motility characteristics.

Suggested Citation

  • Mondal, Partha Sarathi & Mishra, Pawan Kumar & Vicsek, Tamás & Mishra, Shradha, 2025. "Dynamical swirl structures powered by microswimmers in active nematics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 659(C).
  • Handle: RePEc:eee:phsmap:v:659:y:2025:i:c:s0378437124008483
    DOI: 10.1016/j.physa.2024.130338
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124008483
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.130338?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:659:y:2025:i:c:s0378437124008483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.