IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v659y2025ics0378437124008458.html
   My bibliography  Save this article

Recovery of contour nodes in interdependent directed networks

Author

Listed:
  • Perez, Ignacio A.
  • La Rocca, Cristian E.

Abstract

Extensive research has focused on studying the robustness of interdependent non-directed networks and the design of mitigation strategies aimed at reducing disruptions caused by cascading failures. However, real systems such as power and communication networks are directed, which underscores the necessity of broadening the analysis by including directed networks. In this work, we develop an analytical framework to study a recovery strategy in two interdependent directed networks in which a fraction q of nodes in each network have single dependencies with nodes in the other network. Following the random failure of nodes that leaves a fraction p intact, we repair a fraction of nodes that are neighbors of the giant strongly connected component of each network with probability or recovery success rate γ. Our analysis reveals an abrupt transition between total system collapse and complete recovery as p is increased. As a consequence, we identify three distinct phases in the (p,γ) parameter space: collapse despite intervention, recovery enabled by the strategy, and resilience without intervention. Moreover, we demonstrate our strategy on a system built from empirical data and find that it can save resources compared to a random recovery strategy. Our findings underscore the potential of targeted recovery strategies to enhance the robustness of real interdependent directed networks against cascading failures.

Suggested Citation

  • Perez, Ignacio A. & La Rocca, Cristian E., 2025. "Recovery of contour nodes in interdependent directed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 659(C).
  • Handle: RePEc:eee:phsmap:v:659:y:2025:i:c:s0378437124008458
    DOI: 10.1016/j.physa.2024.130335
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124008458
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.130335?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:659:y:2025:i:c:s0378437124008458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.