IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v659y2025ics037843712400829x.html
   My bibliography  Save this article

Multi-scale wavelet transform enhanced graph neural network for pedestrian trajectory prediction

Author

Listed:
  • Lin, Xuanqi
  • Zhang, Yong
  • Wang, Shun
  • Hu, Yongli
  • Yin, Baocai

Abstract

The pedestrian trajectory prediction forecasts future positions by analyzing historical data and environmental context. With the rapid advancement of artificial intelligence and data processing technologies, this technique has become increasingly significant in areas such as autonomous driving, video surveillance, and intelligent transportation systems. Traditional deep learning methods have primarily focused on time-domain modeling and have made great success. However, they struggle to capture multi-scale features and frequency-domain information in trajectories, making it challenging to effectively handle noise and uncertainty in trajectory data. To address these limitations, this paper proposes a Multi-Scale Wavelet Transform Enhanced Graph Neural Network (MSWTE-GNN) based on wavelet transform and multi-scale learning. The model processes trajectory sequences in the frequency domain using wavelet transform, extracting multi-scale features, and integrates multi-scale graph neural networks with cross-scale fusion to learn interaction information among pedestrians. Experimental results demonstrate that the proposed method significantly improves the accuracy and reliability of pedestrian trajectory prediction.

Suggested Citation

  • Lin, Xuanqi & Zhang, Yong & Wang, Shun & Hu, Yongli & Yin, Baocai, 2025. "Multi-scale wavelet transform enhanced graph neural network for pedestrian trajectory prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 659(C).
  • Handle: RePEc:eee:phsmap:v:659:y:2025:i:c:s037843712400829x
    DOI: 10.1016/j.physa.2024.130319
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712400829X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.130319?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:659:y:2025:i:c:s037843712400829x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.