IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v656y2024ics037843712400709x.html
   My bibliography  Save this article

Renormalisation group methods for effective epidemiological models

Author

Listed:
  • Hohenegger, Stefan
  • Sannino, Francesco

Abstract

Epidemiological models describe the spread of an infectious disease within a population. They capture microscopic details on how the disease is passed on among individuals in various different ways, while making predictions about the state of the entirety of the population. However, the type and structure of the specific model considered typically depend on the size of the population under consideration. To analyse this effect, we study a family of effective epidemiological models in space and time that are related to each other through scaling transformations. Inspired by a similar treatment of diffusion processes, we interpret the latter as renormalisation group transformations, both at the level of the underlying differential equations and their solutions. We show that in the large scale limit, the microscopic details of the infection process become irrelevant, safe for a simple real number, which plays the role of the infection rate in a basic compartmental model.

Suggested Citation

  • Hohenegger, Stefan & Sannino, Francesco, 2024. "Renormalisation group methods for effective epidemiological models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 656(C).
  • Handle: RePEc:eee:phsmap:v:656:y:2024:i:c:s037843712400709x
    DOI: 10.1016/j.physa.2024.130200
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712400709X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.130200?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:656:y:2024:i:c:s037843712400709x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.