IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v655y2024ics0378437124006782.html
   My bibliography  Save this article

Effect of second-order network structure on link prediction

Author

Listed:
  • Huang, Xing
  • Qiu, Tian
  • Chen, Guang

Abstract

Small-degree nodes widely exist in real networks, causing the difficulty in link prediction for them due to the lack of information. The clustering information benefits the link prediction by introducing the network inner structure, however, the commonly discussed first-order clustering information is still insufficient for the link prediction of the small-degree nodes. In this article, we introduce the second-order network structure to complement information for the small-degree nodes. A general link prediction approach is proposed by incorporating the second-order clustering coefficient, and is employed to improve eight baseline algorithms. Experimental results show that all the baseline algorithms are remarkably improved. Compared with three advantageous similarity-based and two learning-based algorithms, an improved common neighbor method also shows an advantage in most cases. Further, an information gain between the first- and the second-order network structure is investigated, and the second-order network structure is found to also contain abundant information, which provides a possible understanding to the proposed approach. Our work may shed a new light on how network structure affects link prediction.

Suggested Citation

  • Huang, Xing & Qiu, Tian & Chen, Guang, 2024. "Effect of second-order network structure on link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 655(C).
  • Handle: RePEc:eee:phsmap:v:655:y:2024:i:c:s0378437124006782
    DOI: 10.1016/j.physa.2024.130169
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124006782
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.130169?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:655:y:2024:i:c:s0378437124006782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.