IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v654y2024ics0378437124006575.html
   My bibliography  Save this article

Inequality of creep avalanches can predict imminent breakdown

Author

Listed:
  • Kanuri, Tarun Ram
  • Roy, Subhadeep
  • Biswas, Soumyajyoti

Abstract

We have numerically studied a mean-field fiber bundle model of fracture at a non-zero temperature and acted upon by a constant external tensile stress. The individual fibers fail due to creep-like dynamics that lead up to a catastrophic breakdown. We quantify the variations in sizes of the resulting avalanches by calculating the Lorenz function and two inequality indices – Gini (g) and Kolkata (k) indices – derived from the Lorenz function. We show that the two indices cross just prior to the failure point when the dynamics goes through intermittent avalanches. For a continuous failure dynamics (finite numbers of fibers breaking at each time step), the crossing does not happen. However, in that phase, the usual prediction method i.e., linear relation between the time of minimum strain-rate (time at which rate of fiber breaking is the minimum) and failure time, holds. The boundary between continuous and intermittent dynamics is very close to the boundary between crossing and non-crossing of the two indices in the temperature-stress phase space, both drawn from independent analytical calculations and are verified by numerical simulations.

Suggested Citation

  • Kanuri, Tarun Ram & Roy, Subhadeep & Biswas, Soumyajyoti, 2024. "Inequality of creep avalanches can predict imminent breakdown," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 654(C).
  • Handle: RePEc:eee:phsmap:v:654:y:2024:i:c:s0378437124006575
    DOI: 10.1016/j.physa.2024.130148
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124006575
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.130148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:654:y:2024:i:c:s0378437124006575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.