IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v654y2024ics0378437124006319.html
   My bibliography  Save this article

Impact of local navigation rules on biased random walks in multiplex Markov chains

Author

Listed:
  • Kumar, Arpit
  • Ghosh, Subrata
  • Pal, Pinaki
  • Hens, Chittaranjan

Abstract

Our investigation centres on assessing the importance of a biased parameter (α) in a multiplex Markov chain (MMC) model that is characterized by biased random walks in multiplex networks. We explore how varying complex network topologies affect the total multiplex imbalance as a function of biased parameter. Our primary finding is that the system demonstrates a gradual increase in total imbalance within both positive and negative regions of the biased parameter, with a consistent minimum value occurring at α=−1. In contrast to the negative region, the total imbalance is consistently high when α is significantly positive. We perform a detailed examination of four different network structures and establish three sets of multiplex networks. In each of these networks, the second layer consists of a Regular Random network, while the first layer is either a Barabási–Albert, Erdős-Rényi, or Watts Strogatz network, depending on the set. Our results demonstrate that the combination of Barabási–Albert and Random Regular Network exhibits the highest level of right saturation imbalance. Additionally, for left saturation imbalance, the Erdős–Rényi and Random Regular combination achieve a slightly higher value. We also observe that the total amount of imbalance at α=−1 follows a decreasing trend as the size of the network of each layer increases. Furthermore, we are also able to illustrate that the second most significant eigenvalue of the supra-transition matrix exhibits a similar pattern in response to changes in the bias parameter, aligning with the overall system’s imbalance.

Suggested Citation

  • Kumar, Arpit & Ghosh, Subrata & Pal, Pinaki & Hens, Chittaranjan, 2024. "Impact of local navigation rules on biased random walks in multiplex Markov chains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 654(C).
  • Handle: RePEc:eee:phsmap:v:654:y:2024:i:c:s0378437124006319
    DOI: 10.1016/j.physa.2024.130122
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124006319
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.130122?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pu, Cunlai & Li, Siyuan & Yang, Jian, 2015. "Epidemic spreading driven by biased random walks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 230-239.
    2. Simon Benhamou, 2011. "Dynamic Approach to Space and Habitat Use Based on Biased Random Bridges," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-8, January.
    3. Marta C. González & César A. Hidalgo & Albert-László Barabási, 2009. "Understanding individual human mobility patterns," Nature, Nature, vol. 458(7235), pages 238-238, March.
    4. Alqubori, Omar & Petrovskii, Sergei, 2022. "Analysis of simulated trap counts arising from correlated and biased random walks," Ecological Modelling, Elsevier, vol. 470(C).
    5. LAMBIOTTE, Renaud & DELVENNE, Jean-Charles & BARAHONA, Mauricio, 2014. "Random walks, Markov processes and the multiscale modular organization of complex network," LIDAM Reprints CORE 2660, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alejandro Cholaquidis & Ricardo Fraiman & Gábor Lugosi & Beatriz Pateiro-López, 2016. "Set estimation from reflected Brownian motion," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 1057-1078, November.
    2. Jeong-Hui Park & Eunhye Yoo & Youngdeok Kim & Jung-Min Lee, 2021. "What Happened Pre- and during COVID-19 in South Korea? Comparing Physical Activity, Sleep Time, and Body Weight Status," IJERPH, MDPI, vol. 18(11), pages 1-13, May.
    3. Matteo Böhm & Mirco Nanni & Luca Pappalardo, 2022. "Gross polluters and vehicle emissions reduction," Nature Sustainability, Nature, vol. 5(8), pages 699-707, August.
    4. Xin Xu & Yang Lu & Yupeng Zhou & Zhiguo Fu & Yanjie Fu & Minghao Yin, 2021. "An Information-Explainable Random Walk Based Unsupervised Network Representation Learning Framework on Node Classification Tasks," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    5. David Kofoed Wind & Piotr Sapiezynski & Magdalena Anna Furman & Sune Lehmann, 2016. "Inferring Stop-Locations from WiFi," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-15, February.
    6. Zhou, Xingang & Yeh, Anthony G.O. & Yue, Yang, 2018. "Spatial variation of self-containment and jobs-housing balance in Shenzhen using cellphone big data," Journal of Transport Geography, Elsevier, vol. 68(C), pages 102-108.
    7. Zheng Yan & Wenqian Robertson & Yaosheng Lou & Tom W. Robertson & Sung Yong Park, 2021. "Finding leading scholars in mobile phone behavior: a mixed-method analysis of an emerging interdisciplinary field," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9499-9517, December.
    8. Duan, Zhengyu & Zhao, Haoran & Li, Zhenming, 2023. "Non-linear effects of built environment and socio-demographics on activity space," Journal of Transport Geography, Elsevier, vol. 111(C).
    9. Elisa Frutos-Bernal & Ángel Martín del Rey & Irene Mariñas-Collado & María Teresa Santos-Martín, 2022. "An Analysis of Travel Patterns in Barcelona Metro Using Tucker3 Decomposition," Mathematics, MDPI, vol. 10(7), pages 1-17, March.
    10. Zhai, Wei & Bai, Xueyin & Peng, Zhong-ren & Gu, Chaolin, 2019. "From edit distance to augmented space-time-weighted edit distance: Detecting and clustering patterns of human activities in Puget Sound region," Journal of Transport Geography, Elsevier, vol. 78(C), pages 41-55.
    11. Khajehnejad, Moein, 2019. "Efficiency of long-range navigation on Treelike fractals," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 102-110.
    12. Chaogui Kang & Yu Liu & Diansheng Guo & Kun Qin, 2015. "A Generalized Radiation Model for Human Mobility: Spatial Scale, Searching Direction and Trip Constraint," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-11, November.
    13. Situ, Xinyi, 2024. "From mobility to crime: Collective patterns of human mobility and gun violence in Baltimore City," Journal of Criminal Justice, Elsevier, vol. 94(C).
    14. Yifeng Liu & Yuan Lai, 2024. "Analyzing jogging activity patterns and adaptation to public health regulation," Environment and Planning B, , vol. 51(3), pages 670-688, March.
    15. Li, Ze-Tao & Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2023. "Exploring the topological characteristics of urban trip networks based on taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    16. Claudio Gariazzo & Armando Pelliccioni & Maria Paola Bogliolo, 2019. "Spatiotemporal Analysis of Urban Mobility Using Aggregate Mobile Phone Derived Presence and Demographic Data: A Case Study in the City of Rome, Italy," Data, MDPI, vol. 4(1), pages 1-25, January.
    17. Park, Souneil & Oshan, Taylor M. & Finamore, Alessandro & El Ali, Abdallah, 2020. "Are we breaking bubbles as we move? Exploring the relationship between urban mobility and segregation," OSF Preprints 2ubzn_v1, Center for Open Science.
    18. Oshan, Taylor M., 2020. "Potential and pitfalls of big transport data for spatial interaction models of urban mobility," OSF Preprints gwumt_v1, Center for Open Science.
    19. Han Wang & Damien Fay & Kenneth N. Brown & Liam Kilmartin, 2016. "Modelling revenue generation in a dynamically priced mobile telephony service," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 62(4), pages 711-734, August.
    20. Toru Nakamura & Toru Takumi & Atsuko Takano & Fumiyuki Hatanaka & Yoshiharu Yamamoto, 2013. "Characterization and Modeling of Intermittent Locomotor Dynamics in Clock Gene-Deficient Mice," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-8, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:654:y:2024:i:c:s0378437124006319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.