IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v650y2024ics0378437124005521.html
   My bibliography  Save this article

Influence of initial correlations on evolution over time of an open quantum system

Author

Listed:
  • Los, Victor F.

Abstract

A novel approach to accounting for the influence of initial system–bath correlations on the dynamics of an open quantum system, based on the conventional projection operator technique, is suggested. To avoid the difficulties of treating the initial correlations, the conventional Nakajima–Zwanzig inhomogeneous generalized master equations (GMEs) for a system’s reduced statistical operator and correlation function are exactly converted into the homogeneous GMEs (HGMEs), which take into account the initial correlations in the kernel governing the evolution of these HGMEs. In the second order (Born) approximation in the system–bath interaction, the obtained HGMEs are local in time and valid at all timescales. They are further specialized for a realistic equilibrium Gibbs initial (at t=t0) system+bath state (for a system reduced statistical operator an external force at t>t0 is applied) and then for a bath of oscillators (Boson field). As an example, the evolution of a selected quantum oscillator (a localized mode) interacting with a Boson field (Fano-like model) is considered at different timescales. It is shown explicitly how the initial correlations influence the oscillator evolution process. In particular, it is shown that the equilibrium system’s correlation function acquires at the large timescale the additional constant phase factor conditioned by survived initial system–bath correlations.

Suggested Citation

  • Los, Victor F., 2024. "Influence of initial correlations on evolution over time of an open quantum system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 650(C).
  • Handle: RePEc:eee:phsmap:v:650:y:2024:i:c:s0378437124005521
    DOI: 10.1016/j.physa.2024.130043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124005521
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.130043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:650:y:2024:i:c:s0378437124005521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.