IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v641y2024ics037843712400267x.html
   My bibliography  Save this article

Advanced confidence methods in deep learning

Author

Listed:
  • Meir, Yuval
  • Tevet, Ofek
  • Koresh, Ella
  • Tzach, Yarden
  • Kanter, Ido

Abstract

The typical aim of classification tasks is to maximize the accuracy of the predicted label for a given input. This accuracy increases with the confidence, which is the maximal value of the output units, and when the accuracy equals confidence, calibration is achieved. Herein, several methods are proposed to enhance the accuracy of inputs with similar confidence, extending significantly beyond calibration. Using the first gap between the maximal and second maximal output values, the accuracy of the inputs with similar confidence is enhanced. The extension of the confidence or confidence gap to their minimal value among a set of augmented inputs further enhances the accuracy of inputs with similar confidence. Enhanced accuracies are demonstrated on EfficientNet-B0 trained on ImageNet and CIFAR-100, and VGG-16 trained on CIFAR-100. The results suggest improved applications for high-accuracy classification tasks that require manual operation for a given fraction of low-accuracy inputs.

Suggested Citation

  • Meir, Yuval & Tevet, Ofek & Koresh, Ella & Tzach, Yarden & Kanter, Ido, 2024. "Advanced confidence methods in deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
  • Handle: RePEc:eee:phsmap:v:641:y:2024:i:c:s037843712400267x
    DOI: 10.1016/j.physa.2024.129758
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712400267X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129758?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Deep learning; Machine learning;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:641:y:2024:i:c:s037843712400267x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.