IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v635y2024ics0378437124000219.html
   My bibliography  Save this article

Efficient shallow learning mechanism as an alternative to deep learning

Author

Listed:
  • Tevet, Ofek
  • Gross, Ronit D.
  • Hodassman, Shiri
  • Rogachevsky, Tal
  • Tzach, Yarden
  • Meir, Yuval
  • Kanter, Ido

Abstract

Deep learning architectures comprising tens or even hundreds of convolutional and fully-connected hidden layers differ greatly from the shallow architecture of the brain. Here, we demonstrate that by increasing the relative number of filters per layer of a generalized shallow architecture, the error rates decay as a power law to zero. Additionally, a quantitative method to measure the performance of a single filter, shows that each filter identifies small clusters of possible output labels, with additional noise selected as labels outside the clusters. This average noise per filter also decays for a given generalized architecture as a power law with an increasing number of filters per layer, forming the underlying mechanism of efficient shallow learning. The results are supported by the training of the generalized LeNet-3, VGG-5, and VGG-16 on CIFAR-100 and suggest an increase in the noise power law exponent for deeper architectures. The presented underlying shallow learning mechanism calls for its further quantitative examination using various databases and shallow architectures.

Suggested Citation

  • Tevet, Ofek & Gross, Ronit D. & Hodassman, Shiri & Rogachevsky, Tal & Tzach, Yarden & Meir, Yuval & Kanter, Ido, 2024. "Efficient shallow learning mechanism as an alternative to deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
  • Handle: RePEc:eee:phsmap:v:635:y:2024:i:c:s0378437124000219
    DOI: 10.1016/j.physa.2024.129513
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124000219
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129513?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:635:y:2024:i:c:s0378437124000219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.