IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v622y2023ics0378437123004065.html
   My bibliography  Save this article

Using a modified version of the Tavis–Cummings–Hubbard model to simulate the formation of neutral hydrogen molecule

Author

Listed:
  • Miao, Hui-hui
  • Ozhigov, Yuri Igorevich

Abstract

A finite-dimensional chemistry model with two two-level artificial atoms on quantum dots positioned in optical cavities, called the association–dissociation model of neutral hydrogen molecule, is described. The initial circumstances that led to the formation of the synthetic neutral hydrogen molecule are explained. In quantum form, nuclei’s mobility is portrayed. The association of atoms in the molecule is simulated through a quantum master equation, incorporating hybridization of atomic orbitals into molecular — depending on the position of the nuclei. Consideration is also given to electron spin transitions. Investigated are the effects of temperature variation of various photonic modes on quantum evolution and neutral hydrogen molecule formation. Finally, a more precise model including covalent bond and simple harmonic oscillator (phonon) is proposed.

Suggested Citation

  • Miao, Hui-hui & Ozhigov, Yuri Igorevich, 2023. "Using a modified version of the Tavis–Cummings–Hubbard model to simulate the formation of neutral hydrogen molecule," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
  • Handle: RePEc:eee:phsmap:v:622:y:2023:i:c:s0378437123004065
    DOI: 10.1016/j.physa.2023.128851
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123004065
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.128851?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:622:y:2023:i:c:s0378437123004065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.