IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v620y2023ics0378437123003345.html
   My bibliography  Save this article

Quantum continual learning of quantum data realizing knowledge backward transfer

Author

Listed:
  • Situ, Haozhen
  • Lu, Tianxiang
  • Pan, Minghua
  • Li, Lvzhou

Abstract

For the goal of strong artificial intelligence that can mimic human-level intelligence, AI systems would have the ability to adapt to ever-changing scenarios and learn new knowledge continuously without forgetting previously acquired knowledge. When a machine learning model is consecutively trained on multiple tasks that come in sequence, its performance on previously learned tasks may drop dramatically during the learning process of the newly seen task. To avoid this phenomenon termed catastrophic forgetting, continual learning, also known as lifelong learning, has been proposed and become one of the most up-to-date research areas of machine learning. As quantum machine learning blossoms in recent years, it is interesting to develop quantum continual learning. This paper focuses on the case of quantum models for quantum data where the computation model and the data to be processed are both quantum. The gradient episodic memory method is incorporated to design a quantum continual learning scheme that overcomes catastrophic forgetting and realizes knowledge backward transfer. Specifically, a sequence of quantum state classification tasks is continually learned by a variational quantum classifier whose parameters are optimized by a classical gradient-based optimizer. The gradient of the current task is projected to the closest gradient, avoiding the increase of the loss at previous tasks, but allowing the decrease. Numerical simulation results show that our scheme not only overcomes catastrophic forgetting, but also realize knowledge backward transfer, which means the classifier’s performance on previous tasks is enhanced rather than compromised while learning a new task.

Suggested Citation

  • Situ, Haozhen & Lu, Tianxiang & Pan, Minghua & Li, Lvzhou, 2023. "Quantum continual learning of quantum data realizing knowledge backward transfer," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 620(C).
  • Handle: RePEc:eee:phsmap:v:620:y:2023:i:c:s0378437123003345
    DOI: 10.1016/j.physa.2023.128779
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123003345
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.128779?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:620:y:2023:i:c:s0378437123003345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.