IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v620y2023ics0378437123003278.html
   My bibliography  Save this article

Estimating pandemic effects in urban mass transportation systems: An approach based on visibility graphs and network similarity

Author

Listed:
  • Perez, Yuri
  • Pereira, Fabio Henrique

Abstract

The COVID-19 pandemic has caused unprecedented disruptions to urban systems worldwide, but the extent and nature of these disruptions are not yet fully understood when it comes to transportation. In this work, we aim to explore how social distancing policies have affected passenger demand in urban mass transportation systems with the goal of supporting informed decisions in policy planning. We propose an approach based on complex networks and clustering time series with similar behavior, investigating possible changes in similarity patterns during pandemics and how they reflect into a regional scale. The methods shown here proved useful in detecting that lines in central or peripheral regions present different dynamics, that bus lines have changed their behavior during pandemic so that similarity relations have changed significantly, and that when social distancing started, there was an abrupt shock in the properties of daily passenger time series, and the system did not return to its original behavior until the end of the evaluated period. The approach allows to track evolution of the community structure in different scenarios providing managers with tools to reinforce or destabilize similarities if needed.

Suggested Citation

  • Perez, Yuri & Pereira, Fabio Henrique, 2023. "Estimating pandemic effects in urban mass transportation systems: An approach based on visibility graphs and network similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 620(C).
  • Handle: RePEc:eee:phsmap:v:620:y:2023:i:c:s0378437123003278
    DOI: 10.1016/j.physa.2023.128772
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123003278
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.128772?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:620:y:2023:i:c:s0378437123003278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.