IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v617y2023ics0378437123002224.html
   My bibliography  Save this article

CPNet: Conditionally parameterized graph convolutional network for traffic forecasting

Author

Listed:
  • Wang, Yan
  • Ren, Qianqian
  • Lv, Xingfeng
  • Sun, Jianguo

Abstract

Traffic forecasting has attracted increasing attention to its vital role in intelligent transportation systems (ITS), many approaches have been proposed for improving the performance of traffic forecasting. Aiming at capturing complex spatial and temporal dependencies while maintaining efficient inference, we propose a novel model, named Conditionally Parameterized Graph Convolutional Network (CPNet), to model the dynamics of traffic data from spatial and temporal dimensions for traffic forecasting. Specifically, in the temporal dimension, we design a novel multi-scale temporal convolution module, which captures the temporal dynamics of traffic data from different scales. It is beneficial for both long and short-term forecasting. In the spatial dimension, we develop a conditional parameterized graph convolution module to exploit the spatial dependencies in different ranges. In addition, an attention layer is designed to model the nonlinear and dynamic features. Extensive experiments on four real-world datasets demonstrate the superiority of CPNet against the state-of-the-art baseline models.

Suggested Citation

  • Wang, Yan & Ren, Qianqian & Lv, Xingfeng & Sun, Jianguo, 2023. "CPNet: Conditionally parameterized graph convolutional network for traffic forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
  • Handle: RePEc:eee:phsmap:v:617:y:2023:i:c:s0378437123002224
    DOI: 10.1016/j.physa.2023.128667
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123002224
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.128667?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Changxi & Zhao, Mingxi, 2023. "Spatio-temporal multi-graph convolutional network based on wavelet analysis for vehicle speed prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:617:y:2023:i:c:s0378437123002224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.