IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v617y2023ics0378437123001735.html
   My bibliography  Save this article

Acoustic Full Waveform Inversion with Hamiltonian Monte Carlo Method

Author

Listed:
  • de Lima, Paulo Douglas S.
  • Corso, Gilberto
  • Ferreira, Mauro S.
  • de Araújo, João M.

Abstract

Full-Waveform Inversion (FWI) is a high-resolution technique used in geophysics to evaluate the physical parameters and construct subsurface models in a noisy and limited data scenario. The ill-posed nature of the FWI turns this a challenging problem since more than one model can match the observations. In a probabilistic way, solving the FWI problem demands efficient sampling techniques to infer information on parameters and to estimate the uncertainties in high-dimensional model spaces. We investigate the feasibility of applying the Hamiltonian Monte Carlo (HMC) method in the acoustic FWI by a reflection setup containing different noise level data. We propose a new strategy for tuning the mass matrix based on the acquisition geometry of the seismic survey. Our methodology significantly improves the ability of the HMC method in reconstructing reasonable seismic models with affordable computational efforts.

Suggested Citation

  • de Lima, Paulo Douglas S. & Corso, Gilberto & Ferreira, Mauro S. & de Araújo, João M., 2023. "Acoustic Full Waveform Inversion with Hamiltonian Monte Carlo Method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
  • Handle: RePEc:eee:phsmap:v:617:y:2023:i:c:s0378437123001735
    DOI: 10.1016/j.physa.2023.128618
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123001735
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.128618?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:617:y:2023:i:c:s0378437123001735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.