IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v609y2023ics0378437122009323.html
   My bibliography  Save this article

Homogeneous generalized master equation for an arbitrary initial state of a many-particle classical system

Author

Listed:
  • Los, Victor F.

Abstract

A special projection operator is introduced, which exactly transforms the Nakajima–Zwanzig inhomogeneous Generalized Master Equation (GME) with an irrelevant initial condition term (a source) into a completely closed homogeneous GME (with no initial correlations term) for the relevant part of an N-particle distribution function FN(t) for an arbitrary initial distribution function FN(0) of a system of classical particles. It resolves the problem of the derivation of a closed linear evolution equation from the Liouville equation with no “molecular chaos” type approximation. The obtained equation is equivalent to the completely closed equation for s-particle (s≤N) distribution function Fs(t). The initial correlations are accounted for in this equation in the modified by the introduced projection operator kernel governing the evolution of Fs(t). This equation is further simplified by presenting its kernel in the linear in the particles’ density n approximation. In this approximation the equations for one-particle F1(t) and two-particle F2(t) distribution functions are derived. Special attention is given to analyzing the equation for F1(t) and showed that this equation in the Markov approximation can be written as the linear Boltzmann or Landau (for a small interparticle interaction) equations but with additional terms caused by initial correlations.

Suggested Citation

  • Los, Victor F., 2023. "Homogeneous generalized master equation for an arbitrary initial state of a many-particle classical system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
  • Handle: RePEc:eee:phsmap:v:609:y:2023:i:c:s0378437122009323
    DOI: 10.1016/j.physa.2022.128374
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122009323
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.128374?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:609:y:2023:i:c:s0378437122009323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.