IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v609y2023ics0378437122008858.html
   My bibliography  Save this article

Frame invariant neural network closures for Kraichnan turbulence

Author

Listed:
  • Pawar, Suraj
  • San, Omer
  • Rasheed, Adil
  • Vedula, Prakash

Abstract

Numerical simulations of geophysical and atmospheric flows have to rely on parameterizations of subgrid scale processes due to their limited spatial resolution. Despite substantial progress in developing parameterization (or closure) models for subgrid scale (SGS) processes using physical insights and mathematical approximations, they remain imperfect and can lead to inaccurate predictions. In recent years, machine learning has been successful in extracting complex patterns from high-resolution spatio-temporal data, leading to improved parameterization models, and ultimately better coarse grid prediction. However, the inability to satisfy known physics and poor generalization hinders the application of these models for real-world problems. In this work, we put forth a frame invariant closure approach to improve the accuracy and generalizability of deep learning-based subgrid scale closure models by embedding physical symmetries directly into the structure of the neural network. Specifically, we utilized specialized layers within the convolutional neural network in such a way that desired constraints are theoretically guaranteed without the need for any regularization terms. We demonstrate our framework for a two-dimensional decaying turbulence test case mostly characterized by the forward enstrophy cascade. We show that our frame invariant SGS model (i) accurately predicts the subgrid scale source term, (ii) respects the physical symmetries such as translation, Galilean, and rotation invariance, and (iii) is numerically stable when implemented in coarse-grid simulation with generalization to different initial conditions and Reynolds number. This work opens up a possibility of connecting physics-based theories and data-driven modeling paradigms, and thus represents a promising step towards the development of physically consistent data-driven turbulence closure models.

Suggested Citation

  • Pawar, Suraj & San, Omer & Rasheed, Adil & Vedula, Prakash, 2023. "Frame invariant neural network closures for Kraichnan turbulence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
  • Handle: RePEc:eee:phsmap:v:609:y:2023:i:c:s0378437122008858
    DOI: 10.1016/j.physa.2022.128327
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122008858
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.128327?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yongjin Li & Kamal Shah, 2017. "Numerical Solutions of Coupled Systems of Fractional Order Partial Differential Equations," Advances in Mathematical Physics, Hindawi, vol. 2017, pages 1-14, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:609:y:2023:i:c:s0378437122008858. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.