IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v608y2022ip1s037843712200838x.html
   My bibliography  Save this article

Thermodynamic properties of Ar, Kr and Xe from a Monte Carlo-based perturbation theory with an effective two-body Lennard-Jones potential

Author

Listed:
  • Akhouri, B.P.
  • Solana, J.R.

Abstract

A third-order perturbation theory is used to obtain the equilibrium properties of Ar, Kr and Xe over wide ranges of temperatures and densities. The theory belongs to the framework of the inverse temperature expansion of the Helmholtz free energy, with the perturbation terms determined from Monte Carlo simulation. The interactions are modeled by an effective two-body Lennard-Jones potential incorporating the main contribution of the three-body interactions. To this end, the ratio of three-body to two-body configuration energies have been determined also from Monte Carlo simulation. The results for the pressure and energy at supercritical temperatures are in quite good agreement with experimental data. The liquid–vapor coexistence is also reproduced fairly well, although for Ar and Kr the critical temperature is slightly overestimated as well as the liquid densities at low temperatures, and the coexistence densities of Xe are slightly overestimated for the vapor and underestimated for the liquid near the critical point. In any case, the calculations show a remarkable improvement in the predicted coexistence curve with including the three-body contribution.

Suggested Citation

  • Akhouri, B.P. & Solana, J.R., 2022. "Thermodynamic properties of Ar, Kr and Xe from a Monte Carlo-based perturbation theory with an effective two-body Lennard-Jones potential," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
  • Handle: RePEc:eee:phsmap:v:608:y:2022:i:p1:s037843712200838x
    DOI: 10.1016/j.physa.2022.128280
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712200838X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.128280?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:608:y:2022:i:p1:s037843712200838x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.