IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v606y2022ics0378437122006938.html
   My bibliography  Save this article

Hitting times of quantum and classical random walks in potential spaces

Author

Listed:
  • Varsamis, Georgios D.
  • Karafyllidis, Ioannis G.
  • Sirakoulis, Georgios Ch.

Abstract

The spatial search problem is an interesting and important problem in computer science and especially the area of algorithms. The objective is a marked site to be found in a finite physical space, that can be modeled as a finite lattice or a graph. Many approaches have been developed to address this problem. Classical random walks and quantum walks are efficient models that address the spatial search problem. Quantum walks is a universal model of quantum computation and can be mapped directly to quantum circuits and consequently executed on quantum computers. Quantum walks utilized for quantum search proved to achieve significantly lower hitting times than their classical counterpart, classical random walks. The evolution space for the quantum walks as well as the classical random walks is up until now a free space. In our approach, we introduce external electrical potentials to the evolution space. We study the evolution of discrete time quantum and classical random walks in such potential spaces and the probability — hitting time on finding marked sites. We considered the differences in applied potential among neighboring sites as weights for the lattice — graph. We introduce these weights to the evolution space as an operator for the discrete time quantum walk and as coin probabilities for the classical random walk. Our results show that quantum walks again, evolve faster in the evolution space with the applied potential. Quantum walks also achieve better probability — hitting time on finding the marked site in the potential space. With the introduction of electrical potentials, quantum walks evolving in potential spaces, can lead to the development of novel quantum algorithms, where input parameters can be introduced as external potentials.

Suggested Citation

  • Varsamis, Georgios D. & Karafyllidis, Ioannis G. & Sirakoulis, Georgios Ch., 2022. "Hitting times of quantum and classical random walks in potential spaces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
  • Handle: RePEc:eee:phsmap:v:606:y:2022:i:c:s0378437122006938
    DOI: 10.1016/j.physa.2022.128119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122006938
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.128119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:606:y:2022:i:c:s0378437122006938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.