IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v600y2022ics0378437122003569.html
   My bibliography  Save this article

Network specialization: A topological mechanism for the emergence of cluster synchronization

Author

Listed:
  • Hannesson, Erik
  • Sellers, Jordan
  • Walker, Ethan
  • Webb, Benjamin

Abstract

Real-world networks are dynamic in that both the state of the network components and the structure of the network (topology) change over time. Most studies regarding network evolution consider either one or the other of these types of network processes. Here we consider the interplay of the two, specifically, we consider how changes in network structure effect the dynamics of the network components. To model the growth of a network we use the specialization model known to produce many of the well-known features observed in real-world networks. We show that specialization results in a nontrivial equitable partition of the network where the elements of the partition form clusters that have synchronous dynamics. We also show that these synchronizing clusters inherit their ability to either locally or globally synchronize from the subnetwork from which they are specialized. To the best of the authors’ knowledge this may be the first example of a topological mechanism that induces spontaneous synchronization and real-world like growth. Thus, network specialization can be used to model the co-evolution of dynamic and topological features found in real-world systems.

Suggested Citation

  • Hannesson, Erik & Sellers, Jordan & Walker, Ethan & Webb, Benjamin, 2022. "Network specialization: A topological mechanism for the emergence of cluster synchronization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
  • Handle: RePEc:eee:phsmap:v:600:y:2022:i:c:s0378437122003569
    DOI: 10.1016/j.physa.2022.127496
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122003569
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127496?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jörg Stelling & Steffen Klamt & Katja Bettenbrock & Stefan Schuster & Ernst Dieter Gilles, 2002. "Metabolic network structure determines key aspects of functionality and regulation," Nature, Nature, vol. 420(6912), pages 190-193, November.
    2. Leon Glass, 2001. "Synchronization and rhythmic processes in physiology," Nature, Nature, vol. 410(6825), pages 277-284, March.
    3. Li, Hui-Jia & Xu, Wenzhe & Song, Shenpeng & Wang, Wen-Xuan & Perc, Matjaž, 2021. "The dynamics of epidemic spreading on signed networks," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    4. Fan, Jin & Wang, Xiao Fan, 2005. "On synchronization in scale-free dynamical networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 349(3), pages 443-451.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parastesh, Fatemeh & Dayani, Zahra & Bahramian, Alireza & Jafari, Sajad & Chen, Guanrong, 2023. "Performance of synchronization in networks of chaotic systems under different PID coupling schemes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Qiang & Liang, Zhentao & Wang, Ping & Hou, Jingrui & Chen, Xiuxiu & Liu, Manman, 2021. "Potential index: Revealing the future impact of research topics based on current knowledge networks," Journal of Informetrics, Elsevier, vol. 15(3).
    2. Ricardo Bioni Liberalquino & Maurizio Monge & Stefano Galatolo & Luigi Marangio, 2018. "Chaotic Itinerancy in Random Dynamical System Related to Associative Memory Models," Mathematics, MDPI, vol. 6(3), pages 1-10, March.
    3. Robert G. Sacco, 2019. "The Predictability of Synchronicity Experience: Results from a Survey of Jungian Analysts," International Journal of Psychological Studies, Canadian Center of Science and Education, vol. 11(3), pages 1-46, September.
    4. Irene Otero-Muras & Pencho Yordanov & Joerg Stelling, 2017. "Chemical Reaction Network Theory elucidates sources of multistability in interferon signaling," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-28, April.
    5. Alexey V. Rusakov & Dmitry A. Tikhonov & Nailya I. Nurieva & Alexander B. Medvinsky, 2021. "Emergence of Self-Organized Dynamical Domains in a Ring of Coupled Population Oscillators," Mathematics, MDPI, vol. 9(6), pages 1-13, March.
    6. Azamir, Bouchaib & Bennis, Driss & Michel, Bertrand, 2022. "A simplified algorithm for identifying abnormal changes in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    7. Wang, Wei & Li, Wenyao & Lin, Tao & Wu, Tao & Pan, Liming & Liu, Yanbing, 2022. "Generalized k-core percolation on higher-order dependent networks," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    8. Meo, Marcos M. & Iaconis, Francisco R. & Del Punta, Jessica A. & Delrieux, Claudio A. & Gasaneo, Gustavo, 2024. "Multifractal information on reading eye tracking data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    9. Wu, Jianshe & Jiao, Licheng, 2008. "Synchronization in dynamic networks with nonsymmetrical time-delay coupling based on linear feedback controllers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2111-2119.
    10. James, Nick & Menzies, Max, 2023. "Collective infectivity of the pandemic over time and association with vaccine coverage and economic development," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    11. Nie, Yanyi & Zhong, Xiaoni & Lin, Tao & Wang, Wei, 2022. "Homophily in competing behavior spreading among the heterogeneous population with higher-order interactions," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    12. João F Matias Rodrigues & Andreas Wagner, 2009. "Evolutionary Plasticity and Innovations in Complex Metabolic Reaction Networks," PLOS Computational Biology, Public Library of Science, vol. 5(12), pages 1-11, December.
    13. Lee, Kyu-Min & Lee, Sungmin & Min, Byungjoon & Goh, K.-I., 2023. "Threshold cascade dynamics on signed random networks," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    14. Reis, A.S. & Brugnago, E.L. & Viana, R.L. & Batista, A.M. & Iarosz, K.C. & Ferrari, F.A.S. & Caldas, I.L., 2023. "The role of the fitness model in the suppression of neuronal synchronous behavior with three-stage switching control in clustered networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    15. Nie, Yanyi & Zhong, Xiaoni & Lin, Tao & Wang, Wei, 2023. "Pathogen diversity in meta-population networks," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    16. Wang, Mingyan & Zeng, An & Cui, Xiaohua, 2022. "Collective user switching behavior reveals the influence of TV channels and their hidden community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    17. Gois, Sandra R.F.S.M. & Savi, Marcelo A., 2009. "An analysis of heart rhythm dynamics using a three-coupled oscillator model," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2553-2565.
    18. Xu, Yuan-Hao & Wang, Hao-Jie & Lu, Zhong-Wen & Hu, Mao-Bin, 2023. "Impact of awareness dissemination on epidemic reaction–diffusion in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    19. Gheorghe Maria & Cristiana Luminiţa Gîjiu & Cristina Maria & Carmen Tociu, 2018. "Importance of Considering the Isotonic System Hypothesis When Modelling the Self-Control of Gene Expression Regulatory Modules in Living Cells," Current Trends in Biomedical Engineering & Biosciences, Juniper Publishers Inc., vol. 12(2), pages 29-48, February.
    20. Ausloos, Marcel & Nedic, Olgica & Dekanski, Aleksandar, 2016. "Day of the week effect in paper submission/acceptance/rejection to/in/by peer review journals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 197-203.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:600:y:2022:i:c:s0378437122003569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.