IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v598y2022ics0378437122002953.html
   My bibliography  Save this article

Nonparametric inference for diffusion processes in systems with smooth evolution

Author

Listed:
  • Sarnitsky, Grigory
  • Heinz, Stefan

Abstract

Dynamics of complex systems can often be successfully modeled as a stochastic diffusion process, even if the real dynamics are not strictly diffusive. We show that for such systems current methods for nonparametric estimation of the drift and diffusion terms may lead to results that are inconsistent with the probability distribution of the system. We present a novel estimation technique that for the two systems studied, turbulent flow and molecular motion in gas, produces drift and diffusion consistent with the observed probability density functions. The presented method is applicable to systems with smooth real dynamics.

Suggested Citation

  • Sarnitsky, Grigory & Heinz, Stefan, 2022. "Nonparametric inference for diffusion processes in systems with smooth evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
  • Handle: RePEc:eee:phsmap:v:598:y:2022:i:c:s0378437122002953
    DOI: 10.1016/j.physa.2022.127386
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122002953
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127386?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stanton, Richard, 1997. "A Nonparametric Model of Term Structure Dynamics and the Market Price of Interest Rate Risk," Journal of Finance, American Finance Association, vol. 52(5), pages 1973-2002, December.
    2. F. Ghasemi & J. Peinke & M. Sahimi & M. R. Rahimi Tabar, 2005. "Regeneration of stochastic processes: an inverse method," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 47(3), pages 411-415, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maurice Obstfeld & Jay C. Shambaugh & Alan M. Taylor, 2005. "The Trilemma in History: Tradeoffs Among Exchange Rates, Monetary Policies, and Capital Mobility," The Review of Economics and Statistics, MIT Press, vol. 87(3), pages 423-438, August.
    2. Ang, Andrew & Kristensen, Dennis, 2012. "Testing conditional factor models," Journal of Financial Economics, Elsevier, vol. 106(1), pages 132-156.
    3. Mahdavi, Mahnaz, 2008. "A comparison of international short-term rates under no arbitrage condition," Global Finance Journal, Elsevier, vol. 18(3), pages 303-318.
    4. Yu, Jun, 2012. "Bias in the estimation of the mean reversion parameter in continuous time models," Journal of Econometrics, Elsevier, vol. 169(1), pages 114-122.
    5. Aït-Sahalia, Yacine & Park, Joon Y., 2016. "Bandwidth selection and asymptotic properties of local nonparametric estimators in possibly nonstationary continuous-time models," Journal of Econometrics, Elsevier, vol. 192(1), pages 119-138.
    6. Griselda Deelstra & Michèle Vanmaele & David Vyncke, 2010. "Minimizing the Risk of a Financial Product Using a Put Option," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(4), pages 767-800, December.
    7. Becker, R. & Hurn, A.S., 2004. "Using discrete-time techniques to test continuous-time models for nonlinearity in drift," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(1), pages 121-131.
    8. Yamamura, Mariko & Shoji, Isao, 2010. "A nonparametric method of multi-step ahead forecasting in diffusion processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(12), pages 2408-2415.
    9. Wooyong Lee & Priscilla E. Greenwood & Nancy Heckman & Wolfgang Wefelmeyer, 2017. "Pre-averaged kernel estimators for the drift function of a diffusion process in the presence of microstructure noise," Statistical Inference for Stochastic Processes, Springer, vol. 20(2), pages 237-252, July.
    10. Gómez-Valle, Lourdes & Marti­nez-Rodri­guez, Julia, 2008. "Modelling the term structure of interest rates: An efficient nonparametric approach," Journal of Banking & Finance, Elsevier, vol. 32(4), pages 614-623, April.
    11. Ignatieva Katja, 2014. "A nonparametric model for spot price dynamics and pricing of futures contracts in electricity markets," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(5), pages 483-505, December.
    12. Robert Ferstl & Alexander Weissensteiner, 2011. "Backtesting Short-Term Treasury Management Strategies Based on Multi-Stage Stochastic Programming," Palgrave Macmillan Books, in: Gautam Mitra & Katharina Schwaiger (ed.), Asset and Liability Management Handbook, chapter 19, pages 469-494, Palgrave Macmillan.
    13. Kanaya, Shin, 2017. "Convergence Rates Of Sums Of Α-Mixing Triangular Arrays: With An Application To Nonparametric Drift Function Estimation Of Continuous-Time Processes," Econometric Theory, Cambridge University Press, vol. 33(5), pages 1121-1153, October.
    14. Gil-Bazo Javier & Rubio Gonzalo, 2004. "A Nonparametric Dimension Test of the Term Structure," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(3), pages 1-28, September.
    15. Hlouskova, Jaroslava & Sögner, Leopold, 2020. "GMM estimation of affine term structure models," Econometrics and Statistics, Elsevier, vol. 13(C), pages 2-15.
    16. Koo, Bonsoo & Linton, Oliver, 2012. "Estimation of semiparametric locally stationary diffusion models," Journal of Econometrics, Elsevier, vol. 170(1), pages 210-233.
    17. Gospodinov, Nikolay & Hirukawa, Masayuki, 2012. "Nonparametric estimation of scalar diffusion models of interest rates using asymmetric kernels," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 595-609.
    18. repec:wyi:journl:002108 is not listed on IDEAS
    19. Chew Lian Chua & Sandy Suardi & Sarantis Tsiaplias, 2011. "Predicting Short-Term Interest Rates: Does Bayesian Model Averaging Provide Forecast Improvement?," Melbourne Institute Working Paper Series wp2011n01, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
    20. Jan Baldeaux & Fung & Katja Ignatieva & Eckhard Platen, 2015. "A Hybrid Model for Pricing and Hedging of Long-dated Bonds," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(4), pages 366-398, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:598:y:2022:i:c:s0378437122002953. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.