IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v596y2022ics0378437122001406.html
   My bibliography  Save this article

An improved network-based recommendation model via inhibiting algorithm bias

Author

Listed:
  • Qiu, Tian
  • Lu, Tian
  • Chen, Guang
  • Zhang, Zi-Ke

Abstract

As an effective tool of information filtering, the network-based recommendation algorithms encounter the challenging problem of recommendation bias induced by the object heterogeneity. Previous solutions usually make the improvement based on some specific algorithm, however, are difficult to generalize to different algorithms. In this article, we propose an improved model with a general formula, by inhibiting recommendation bias described by the eigenvalue and eigenvectors of the algorithm similarity matrix, and applied the model into ten different algorithms. Based on four real recommender systems, the experimental results show that nearly all the algorithms are improved in three aspects of recommendation accuracy, diversity and novelty, for all the four datasets. The recommendation accuracy of cold objects is also elevated. Especially, two excellent algorithms are further improved without introducing any other parameter. Our work may shed a new light on developing general recommendation algorithms from the perspective of revealing intrinsic feature in recommender systems.

Suggested Citation

  • Qiu, Tian & Lu, Tian & Chen, Guang & Zhang, Zi-Ke, 2022. "An improved network-based recommendation model via inhibiting algorithm bias," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
  • Handle: RePEc:eee:phsmap:v:596:y:2022:i:c:s0378437122001406
    DOI: 10.1016/j.physa.2022.127109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122001406
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hou, Lei & Huang, Yichen, 2024. "Optimizing the connectedness of recommendation networks for retrieval accuracy and visiting diversity of random walks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    2. Wang, Zhihui & Chen, Jianrui & Li, Jiamin & Wang, Zhen, 2024. "Interest community-based recommendation via cognitive similarity and adaptive evolutionary clustering," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:596:y:2022:i:c:s0378437122001406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.