IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v594y2022ics0378437122000899.html
   My bibliography  Save this article

Growth kinetics of a single-walled carbon nanotube: Exact and simulation results

Author

Listed:
  • Zounmenou, F.
  • Hontinfinde, R.D.
  • Hontinfinde, F.

Abstract

The single walled (SW) carbon nanotube (CNT), discovered in 1991, is a fascinating system for studying key processes relevant to nanomaterials synthesis. It has crucial technological applications, in particular in biomedecine, sensors and telecom networks. In this work, we study numerically the growth kinetics and surface roughness of a hexagonal SWCNT with zero chiral angle using Glauber dynamics. The SWCNT growth kinetics are described in terms of Markov processes whose states are given by its upper edge profile that we mapped onto a 5-vertex model. The model parameters considered are the supersaturation of the fluid phase or driving force and the temperature. The kinetic equation of the system is solved exactly by means of the transition matrix method for small samples and the steady state growth velocity is calculated. Kinetic Monte Carlo (KMC) simulations based on the Bortz–Kalos–Lebowitz (BKL) update algorithm are used to extract some large scale properties of the model.

Suggested Citation

  • Zounmenou, F. & Hontinfinde, R.D. & Hontinfinde, F., 2022. "Growth kinetics of a single-walled carbon nanotube: Exact and simulation results," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
  • Handle: RePEc:eee:phsmap:v:594:y:2022:i:c:s0378437122000899
    DOI: 10.1016/j.physa.2022.127013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122000899
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:594:y:2022:i:c:s0378437122000899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.