IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v590y2022ics0378437121009456.html
   My bibliography  Save this article

A network SIRX model for the spreading of COVID-19

Author

Listed:
  • Dimou, Argyris
  • Maragakis, Michael
  • Argyrakis, Panos

Abstract

Infectious diseases, such as the current COVID-19, have a huge economic and societal impact. The ability to model its transmission characteristics is critical to minimize its impact. In fact, predicting how fast an infection is spreading could be a major factor in deciding on the severity, extent and strictness of the applied mitigation measures, such as the recent lockdowns. Even though modelling epidemics is a well studied subject, usually models do not include quarantine or other social measures, such as those imposed in the recent pandemic. The current work builds upon a recent paper by Maier and Brockmann (2020), where a compartmental SIRX model was implemented. That model included social or individual behavioural changes during quarantine, by introducing state X, in which symptomatic quarantined individuals are not transmitting the infection anymore, and described well the transmission in the initial stages of the infection. The results of the model were applied to real data from several provinces in China, quite successfully. In our approach we use a Monte-Carlo simulation model on networks. Individuals are network nodes and the links are their contacts. We use a spreading mechanism from the initially infected nodes to their nearest neighbours, as has been done previously. Initially, we find the values of the rate constants (parameters) the same way as in Maier and Brockmann (2020) for the confirmed cases of a country, on a daily basis, as given by the Johns Hopkins University. We then use different types of networks (random Erdős–Rényi, Small World, and Barabási–Albert Scale-Free) with various characteristics in an effort to find the best fit with the real data for the same geographical regions as reported in Maier and Brockmann (2020). Our simulations show that the best fit comes with the Erdős–Rényi random networks. We then apply this method to several other countries, both for large-size countries, and small size ones. In all cases investigated we find the same result, i.e. best agreement for the evolution of the pandemic with time is for the Erdős–Rényi networks. Furthermore, our results indicate that the best fit occurs for a random network with an average degree of the order of 〈k〉≈ 10–25, for all countries tested. Scale Free and Small World networks fail to fit the real data convincingly.

Suggested Citation

  • Dimou, Argyris & Maragakis, Michael & Argyrakis, Panos, 2022. "A network SIRX model for the spreading of COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
  • Handle: RePEc:eee:phsmap:v:590:y:2022:i:c:s0378437121009456
    DOI: 10.1016/j.physa.2021.126746
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121009456
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126746?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gallos, Lazaros K. & Argyrakis, Panos, 2003. "Distribution of infected mass in disease spreading in scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 330(1), pages 117-123.
    2. Croccolo, Fabrizio & Roman, H. Eduardo, 2020. "Spreading of infections on random graphs: A percolation-type model for COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hector Eduardo Roman & Fabrizio Croccolo, 2021. "Spreading of Infections on Network Models: Percolation Clusters and Random Trees," Mathematics, MDPI, vol. 9(23), pages 1-22, November.
    2. Yiannis Contoyiannis & Stavros G. Stavrinides & Michael P. Hanias & Myron Kampitakis & Pericles Papadopoulos & Rodrigo Picos & Stelios M. Potirakis, 2020. "A Universal Physics-Based Model Describing COVID-19 Dynamics in Europe," IJERPH, MDPI, vol. 17(18), pages 1-19, September.
    3. Ronald Manríquez & Camilo Guerrero-Nancuante & Felipe Martínez & Carla Taramasco, 2021. "Spread of Epidemic Disease on Edge-Weighted Graphs from a Database: A Case Study of COVID-19," IJERPH, MDPI, vol. 18(9), pages 1-25, April.
    4. Gandzha, I.S. & Kliushnichenko, O.V. & Lukyanets, S.P., 2021. "Modeling and controlling the spread of epidemic with various social and economic scenarios," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    5. Huang, Binchao & Yang, Jin-Xuan & Li, Xin, 2021. "Identifying influential links to control spreading of epidemics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    6. Matouk, A.E., 2020. "Complex dynamics in susceptible-infected models for COVID-19 with multi-drug resistance," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:590:y:2022:i:c:s0378437121009456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.