IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v590y2022ics0378437121009316.html
   My bibliography  Save this article

Flocking and collision avoidance problem of a singular Cucker–Smale model with external perturbations

Author

Listed:
  • Zhao, Rundong
  • Liu, Qiming
  • Zhang, Huazong

Abstract

In order to study the influence of external force or external perturbation on flocking behavior, a Cucker–Smale flocking model with singular communication weight and perturbation functions is proposed. By imposing appropriate restrictions on the perturbation functions, we first prove the system does not allow any collisions between agents under certain initial conditions. Moreover, under the same conditions, we obtain the system has an asymptotic flocking. Last, we give specific examples of perturbation functions and verify the correctness of the results through numerical simulations.

Suggested Citation

  • Zhao, Rundong & Liu, Qiming & Zhang, Huazong, 2022. "Flocking and collision avoidance problem of a singular Cucker–Smale model with external perturbations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
  • Handle: RePEc:eee:phsmap:v:590:y:2022:i:c:s0378437121009316
    DOI: 10.1016/j.physa.2021.126718
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121009316
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126718?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Jian & Xi, Jingke & Li, Shihan & Shi, Hongjun & Sun, Yongzheng, 2024. "Time cost estimation for flocking of Cucker–Smale type models with switching protocol," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    2. Li, Saisai & Wang, Wenke & Li, Le & Huang, Chuangxia & Yao, Zhaoye, 2024. "Hierarchical clustering cooperation flocking based on feedback mechanism," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 222(C), pages 110-147.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:590:y:2022:i:c:s0378437121009316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.