Thermodynamic and electromagnetic properties of the eta-pairing superconductivity in the Penson–Kolb model
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2021.126403
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- M. R. Norman & H. Ding & M. Randeria & J. C. Campuzano & T. Yokoya & T. Takeuchi & T. Takahashi & T. Mochiku & K. Kadowaki & P. Guptasarma & D. G. Hinks, 1998. "Destruction of the Fermi surface in underdoped high-Tc superconductors," Nature, Nature, vol. 392(6672), pages 157-160, March.
- Z. A. Xu & N. P. Ong & Y. Wang & T. Kakeshita & S. Uchida, 2000. "Vortex-like excitations and the onset of superconducting phase fluctuation in underdoped La2-xSrxCuO4," Nature, Nature, vol. 406(6795), pages 486-488, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shuqiu Wang & Peayush Choubey & Yi Xue Chong & Weijiong Chen & Wangping Ren & H. Eisaki & S. Uchida & Peter J. Hirschfeld & J. C. Séamus Davis, 2021. "Scattering interference signature of a pair density wave state in the cuprate pseudogap phase," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
- Shinji Kawasaki & Nao Tsukuda & Chengtian Lin & Guo-qing Zheng, 2024. "Strain-induced long-range charge-density wave order in the optimally doped Bi2Sr2−xLaxCuO6 superconductor," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Shusen Ye & Miao Xu & Hongtao Yan & Zi-Xiang Li & Changwei Zou & Xintong Li & Zhenqi Hao & Chaohui Yin & Yiwen Chen & Xingjiang Zhou & Dung-Hai Lee & Yayu Wang, 2024. "Emergent normal fluid in the superconducting ground state of overdoped cuprates," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
- Koichiro Ienaga & Yutaka Tamoto & Masahiro Yoda & Yuki Yoshimura & Takahiro Ishigami & Satoshi Okuma, 2024. "Broadened quantum critical ground state in a disordered superconducting thin film," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
- Kifu Kurokawa & Shunsuke Isono & Yoshimitsu Kohama & So Kunisada & Shiro Sakai & Ryotaro Sekine & Makoto Okubo & Matthew D. Watson & Timur K. Kim & Cephise Cacho & Shik Shin & Takami Tohyama & Kazuyas, 2023. "Unveiling phase diagram of the lightly doped high-Tc cuprate superconductors with disorder removed," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
More about this item
Keywords
Penson-Kolb model; Unconventional superconductivity; Eta-pairing; Phase diagrams; Kosterlitz–Thouless scenario; Nonlocal pairing mechanism;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:585:y:2022:i:c:s0378437121006762. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.