IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v585y2022ics0378437121006580.html
   My bibliography  Save this article

Electronic dephasing in mixed quantum–classical molecular systems using the spin-boson model

Author

Listed:
  • Toutounji, Mohamad

Abstract

Pure electronic dephasing is investigated using the spin-boson Hamiltonian in mixed quantum–classical environment. The spin-boson model used here is a composite system made up of a quantum subsystem, an electronic 2-level subsystem linearly coupled to harmonic vibrations, interacting with a classical bath. Experimental results for a multitude of molecular systems indicate that the zero-phonon line (ZPL) profile is determined by electronic dephasing, which is not accounted for in the multimode Brownian oscillator (MBO) model due to the unphysical contribution from the MBO bath modes to the ZPL profile. Mixed quantum–classical dynamics formalism of non-equilibrium systems is employed to assess the contribution of the bath modes to pure electronic dephasing by probing the ZPL profile when coupled to a classical bath in the mixed quantum–classical condensed systems. Pure electronic dephasing is discussed in the context of mixed quantum–classical dynamics formalism which starts with mixed quantum–classical Liouville equation in a mixed quantum–classical environment. It is noteworthy, however, that the fundamental difference between the fully quantum MBO model and the mixed quantum–classical Brownian oscillator, is that the zero-phonon line calculated by the former shows unphysical asymmetry on the low-energy side as it has not been observed in real systems, whereas the ZPL reported herein eliminates this asymmetry. A systematic approach using matrix mechanics is developed to treat this phenomenon. To this end, a closed-form expression of linear and nonlinear optical electronic transition dipole moment time correlation functions in a dissipative media are derived. Linear absorption spectra and 4-wave mixing signals at various temperatures showing a sound thermal broadening, temporal decay, and accurate pure dephasing further ratify the applicability and correctness of the mixed quantum–classical dynamics approach to spectroscopy and dynamics are computed.

Suggested Citation

  • Toutounji, Mohamad, 2022. "Electronic dephasing in mixed quantum–classical molecular systems using the spin-boson model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
  • Handle: RePEc:eee:phsmap:v:585:y:2022:i:c:s0378437121006580
    DOI: 10.1016/j.physa.2021.126385
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121006580
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126385?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:585:y:2022:i:c:s0378437121006580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.