IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v584y2021ics0378437121006385.html
   My bibliography  Save this article

Quantum cycle in relativistic non-commutative space with generalized uncertainty principle correction

Author

Listed:
  • Chattopadhyay, Pritam
  • Pandit, Tanmoy
  • Mitra, Ayan
  • Paul, Goutam

Abstract

Quantum heat cycles and quantum refrigerators are analyzed using various quantum systems as their working mediums. For example, to evaluate the efficiency and the work done of the Carnot cycle in the quantum regime, one can consider the harmonic oscillator as a working medium. For all these well-defined working substances (which are analyzed in commutative space structure), the efficiency of the engine is not up to the mark of the Carnot efficiency. So, one inevitable question arise, can one observe a catalytic effect on the efficiency of the engines and refrigerators when the space structure is changed? In this paper, two different working substances in non-commutative spacetime with relativistic and generalized uncertainty principle corrections have been considered for the analysis of the efficiency of the heat engine cycles. The efficiency of the quantum heat engine gets a boost for higher values of the non-commutative parameter with a harmonic oscillator as the working substance. In the case of the second working medium (one-dimensional infinite potential well), the efficiency shows a constant result in the non-commutative space structure.

Suggested Citation

  • Chattopadhyay, Pritam & Pandit, Tanmoy & Mitra, Ayan & Paul, Goutam, 2021. "Quantum cycle in relativistic non-commutative space with generalized uncertainty principle correction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
  • Handle: RePEc:eee:phsmap:v:584:y:2021:i:c:s0378437121006385
    DOI: 10.1016/j.physa.2021.126365
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121006385
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126365?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Santos, Jonas F.G. & Chattopadhyay, Pritam, 2023. "PT-symmetry effects in measurement-based quantum thermal machines," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:584:y:2021:i:c:s0378437121006385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.