IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v582y2021ics0378437121005367.html
   My bibliography  Save this article

Modified Kuramoto model with inverse-square law coupling and spatial time delay

Author

Listed:
  • Lee, Hae Seong
  • Park, Jong Il
  • Kim, Beom Jun

Abstract

We propose a modified Kuramoto model to describe the hand-clapping synchronization observed in a large group of people. There are two different ingredients in our model: The finiteness of the sound speed leads to the time-delay effect across the system, and the large distance makes the sound intensity decrease significantly. These two different but related factors are expected to make the synchrony in a large audience hard to achieve. We numerically and analytically test which between the two factors can be crucial to explain the failure of hand-clapping synchronization in a large group of people. We conclude that the time-delay effect due to the finite sound speed is not as important as the effect of the decreasing sound intensity with distance as long as the audience size is not too big.

Suggested Citation

  • Lee, Hae Seong & Park, Jong Il & Kim, Beom Jun, 2021. "Modified Kuramoto model with inverse-square law coupling and spatial time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
  • Handle: RePEc:eee:phsmap:v:582:y:2021:i:c:s0378437121005367
    DOI: 10.1016/j.physa.2021.126263
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121005367
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126263?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Néda, Z. & Nikitin, A. & Vicsek, T., 2003. "Synchronization of two-mode stochastic oscillators: a new model for rhythmic applause and much more," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 321(1), pages 238-247.
    2. Z. Néda & E. Ravasz & Y. Brechet & T. Vicsek & A.-L. Barabási, 2000. "The sound of many hands clapping," Nature, Nature, vol. 403(6772), pages 849-850, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carballosa, Alejandro & Muñuzuri, Alberto P., 2022. "Intermittency regimes of poorly-mixed chemical oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    2. Takayuki Niizato & Yukio-Pegio Gunji, 2012. "Fluctuation-Driven Flocking Movement in Three Dimensions and Scale-Free Correlation," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-1, May.
    3. Mehdi Moussaïd & Elsa G Guillot & Mathieu Moreau & Jérôme Fehrenbach & Olivier Chabiron & Samuel Lemercier & Julien Pettré & Cécile Appert-Rolland & Pierre Degond & Guy Theraulaz, 2012. "Traffic Instabilities in Self-Organized Pedestrian Crowds," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-10, March.
    4. Mussa Juane, Mariamo & García-Selfa, David & Muñuzuri, Alberto P., 2020. "Turing instability in nonlinear chemical oscillators coupled via an active medium," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    5. Echegoyen, I. & Vera-Ávila, V. & Sevilla-Escoboza, R. & Martínez, J.H. & Buldú, J.M., 2019. "Ordinal synchronization: Using ordinal patterns to capture interdependencies between time series," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 8-18.
    6. Sun, Ruyi & Chang, Jiaqi & Wang, Hongmei & Li, Miaomiao & Sun, Yongzheng, 2024. "Time and energy costs for synchronization of multi-layer networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 440-455.
    7. Monic Sun & Xiaoquan (Michael) Zhang & Feng Zhu, 2012. "To Belong or to Be Different? Evidence from a Large-Scale Field Experiment in China," Working Papers 12-15, NET Institute, revised Oct 2012.
    8. Yadav, Vijay K. & Shukla, Vijay K. & Das, Subir, 2019. "Difference synchronization among three chaotic systems with exponential term and its chaos control," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 36-51.
    9. Lacerda, Juliana C. & Freitas, Celso & Macau, Elbert E.N., 2022. "Elementary changes in topology and power transmission capacity can induce failures in power grids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    10. Tanida, Sakurako, 2022. "The synchronization of elevators when not all passengers will ride the first-arriving elevator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    11. Keiko Yokoyama & Yuji Yamamoto, 2011. "Three People Can Synchronize as Coupled Oscillators during Sports Activities," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-8, October.
    12. Ngamsa Tegnitsap, J.V. & Fotsin, H.B., 2022. "Multistability, transient chaos and hyperchaos, synchronization, and chimera states in wireless magnetically coupled VDPCL oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:582:y:2021:i:c:s0378437121005367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.