Nonlocal quantum system with fractal distribution of states
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2021.126009
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Tarasov, Vasily E., 2015. "Lattice fractional calculus," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 12-33.
- Ishiwata, Ryosuke & Sugiyama, Yūki, 2012. "Relationships between power-law long-range interactions and fractional mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 5827-5838.
- Tarasov, Vasily E., 2014. "Flow of fractal fluid in pipes: Non-integer dimensional space approach," Chaos, Solitons & Fractals, Elsevier, vol. 67(C), pages 26-37.
- Tarasov, Vasily E., 2015. "Fractional Liouville equation on lattice phase-space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 330-342.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tarasov, Vasily E., 2023. "Nonlocal statistical mechanics: General fractional Liouville equations and their solutions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tarasov, Vasily E., 2023. "Nonlocal statistical mechanics: General fractional Liouville equations and their solutions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
- Vasily E. Tarasov, 2024. "Exact Finite-Difference Calculus: Beyond Set of Entire Functions," Mathematics, MDPI, vol. 12(7), pages 1-37, March.
- Michelitsch, T.M. & Collet, B.A. & Riascos, A.P. & Nowakowski, A.F. & Nicolleau, F.C.G.A., 2016. "A fractional generalization of the classical lattice dynamics approach," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 43-50.
- Vasily E. Tarasov, 2016. "Exact Discrete Analogs of Canonical Commutation and Uncertainty Relations," Mathematics, MDPI, vol. 4(3), pages 1-13, June.
- Vasily E. Tarasov, 2023. "General Fractional Calculus in Multi-Dimensional Space: Riesz Form," Mathematics, MDPI, vol. 11(7), pages 1-20, March.
- Valentina V. Tarasova & Vasily E. Tarasov, 2017. "Logistic map with memory from economic model," Papers 1712.09092, arXiv.org.
- Tarasova, Valentina V. & Tarasov, Vasily E., 2017. "Logistic map with memory from economic model," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 84-91.
- Tarasov, Vasily E. & Tarasova, Valentina V., 2018. "Macroeconomic models with long dynamic memory: Fractional calculus approach," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 466-486.
- Vasily E. Tarasov & Valentina V. Tarasova, 2017. "Accelerators in Macroeconomics: Comparison of Discrete and Continuous Approaches," American Journal of Economics and Business Administration, Science Publications, vol. 9(3), pages 47-55, November.
- Tarasov, Vasily E., 2015. "Fractional Liouville equation on lattice phase-space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 330-342.
- Tarasov, Vasily E., 2015. "Lattice fractional calculus," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 12-33.
- Spineanu, F. & Vlad, M., 2015. "Self-organization of the vorticity field in two-dimensional quasi-ideal fluids: The statistical and field-theoretical formulations," Chaos, Solitons & Fractals, Elsevier, vol. 81(PB), pages 473-479.
- Zhang, Yong & Sun, HongGuang & Stowell, Harold H. & Zayernouri, Mohsen & Hansen, Samantha E., 2017. "A review of applications of fractional calculus in Earth system dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 29-46.
- Vasily E. Tarasov, 2015. "Exact Discrete Analogs of Derivatives of Integer Orders: Differences as Infinite Series," Journal of Mathematics, Hindawi, vol. 2015, pages 1-8, November.
- Valentina V. Tarasova & Vasily E. Tarasov, 2017. "Accelerators in macroeconomics: Comparison of discrete and continuous approaches," Papers 1712.09605, arXiv.org.
- Michelitsch, T.M. & Collet, B. & Nowakowski, A.F. & Nicolleau, F.C.G.A., 2016. "Lattice fractional Laplacian and its continuum limit kernel on the finite cyclic chain," Chaos, Solitons & Fractals, Elsevier, vol. 82(C), pages 38-47.
More about this item
Keywords
Nonlocal statistical mechanics; Quantum statistics; Fractal density of states; Fractional dynamics; Nonlocal Schrodinger equation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:574:y:2021:i:c:s0378437121002818. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.