IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v568y2021ics0378437120309845.html
   My bibliography  Save this article

Phase permutation entropy: A complexity measure for nonlinear time series incorporating phase information

Author

Listed:
  • Kang, Huan
  • Zhang, Xiaofeng
  • Zhang, Guangbin

Abstract

Based on permutation entropy (PE), which has been presented as a measure to characterize the complexity of nonlinear time series, phase permutation entropy (PPE) is proposed in this paper. Experiments are implemented using artificial and actual data to show the performance of PPE algorithm. The achieved results demonstrate that PPE can amplify the detection effect of dynamical changes compared with PE whether using the logistic map or actual signals. Increasing embedding dimension can improve the capability of detecting dynamical changes using PPE method. Furthermore, PPE is not sensitive to data length when embedding dimension is less than or equal to 5 and it is more susceptible to noise than PE. The results from actual signals show that PPE can be used as an effective analytical tool in the field of biomedical and engineering signals processing.

Suggested Citation

  • Kang, Huan & Zhang, Xiaofeng & Zhang, Guangbin, 2021. "Phase permutation entropy: A complexity measure for nonlinear time series incorporating phase information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 568(C).
  • Handle: RePEc:eee:phsmap:v:568:y:2021:i:c:s0378437120309845
    DOI: 10.1016/j.physa.2020.125686
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120309845
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125686?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luís Francisco Aguiar & Maria Joana Soares, 2010. "The Continuous Wavelet Transform: A Primer," NIPE Working Papers 23/2010, NIPE - Universidade do Minho.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wan, Li & Ling, Guang & Guan, Zhi-Hong & Fan, Qingju & Tong, Yu-Han, 2022. "Fractional multiscale phase permutation entropy for quantifying the complexity of nonlinear time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    2. Wei, Nan & Yin, Lihua & Li, Chao & Liu, Jinyuan & Li, Changjun & Huang, Yuanyuan & Zeng, Fanhua, 2022. "Data complexity of daily natural gas consumption: Measurement and impact on forecasting performance," Energy, Elsevier, vol. 238(PC).
    3. Lin, Guancen & Lin, Aijing, 2022. "Modified multiscale sample entropy and cross-sample entropy based on horizontal visibility graph," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    4. Lin, Guancen & Lin, Aijing & Mi, Yujia & Gu, Danlei, 2023. "Measurement of information transfer based on phase increment transfer entropy," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Martey Addo & Monica Billio & Dominique Guegan, 2012. "Alternative Methodology for Turning-Point Detection in Business Cycle : A Wavelet Approach," Post-Print halshs-00694420, HAL.
    2. Boako, Gideon & Alagidede, Paul, 2017. "Co-movement of Africa’s equity markets: Regional and global analysis in the frequency–time domains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 359-380.
    3. Lin, Fu-Lai & Chen, Yu-Fen & Yang, Sheng-Yung, 2016. "Does the value of US dollar matter with the price of oil and gold? A dynamic analysis from time–frequency space," International Review of Economics & Finance, Elsevier, vol. 43(C), pages 59-71.
    4. Habimana, Olivier, 2016. "Oil price, exchange rate and consumer price co-movement: A continuous-wavelet analysis," MPRA Paper 71886, University Library of Munich, Germany.
    5. Luís Aguiar-Conraria & Teresa Maria Rodrigues & Maria Joana Soares, 2014. "Oil Shocks and the Euro as an Optimum Currency Area," Dynamic Modeling and Econometrics in Economics and Finance, in: Marco Gallegati & Willi Semmler (ed.), Wavelet Applications in Economics and Finance, edition 127, pages 143-156, Springer.
    6. Bilgili, Faik & Kocak, Emrah & Kuskaya, Sevda & Bulut, Umit, 2022. "Co-movements and causalities between ethanol production and corn prices in the USA: New evidence from wavelet transform analysis," Energy, Elsevier, vol. 259(C).
    7. Magazzino, Cosimo & Giolli, Lorenzo, 2021. "The relationship among railway networks, energy consumption, and real added value in Italy. Evidence form ARDL and Wavelet analysis," Research in Transportation Economics, Elsevier, vol. 90(C).
    8. Aguiar-Conraria, LuI´s & Joana Soares, Maria, 2011. "Business cycle synchronization and the Euro: A wavelet analysis," Journal of Macroeconomics, Elsevier, vol. 33(3), pages 477-489, September.
    9. Emre Kahraman & Gazanfer Unal, 2016. "Multiple Wavelet Coherency Analysis and Forecasting of Metal Prices," Papers 1602.01960, arXiv.org.
    10. Su, Chi-Wei & Khan, Khalid & Tao, Ran & Nicoleta-Claudia, Moldovan, 2019. "Does geopolitical risk strengthen or depress oil prices and financial liquidity? Evidence from Saudi Arabia," Energy, Elsevier, vol. 187(C).
    11. Rua, António & Nunes, Luis C., 2012. "A wavelet-based assessment of market risk: The emerging markets case," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(1), pages 84-92.
    12. Olaolu Richard Olayeni & Aviral Kumar Tiwari & Reza Sherafatian-Jahromi & Olagbaju Ifeolu Oladiran, 2014. "Inflation, output gap, and money in Malaysia: evidence from wavelet coherence," International Journal of Computational Economics and Econometrics, Inderscience Enterprises Ltd, vol. 4(3/4), pages 320-338.
    13. Aguiar-Conraria, Luís & Martins, Manuel M.F. & Soares, Maria Joana, 2012. "The yield curve and the macro-economy across time and frequencies," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1950-1970.
    14. Concepción González-Concepción & María Candelaria Gil-Fariña & Celina Pestano-Gabino, 2018. "Wavelet power spectrum and cross-coherency of Spanish economic variables," Empirical Economics, Springer, vol. 55(2), pages 855-882, September.
    15. Marcin Koltuniak, 2016. "Examination of the directions of spillover effects between the real estate and stock prices in Poland using wavelet analysis," Bank i Kredyt, Narodowy Bank Polski, vol. 47(3), pages 251-266.
    16. Lu, Changrong & Li, Jiaxiang & Liu, Lian & Yu, Fandi, 2023. "Spillover effect of the RMB and Non-USD currencies after the COVID-19 pandemic: Evidence captured from 30-minute high frequency data," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 527-552.
    17. Schmidbauer, Harald & Rösch, Angi & Uluceviz, Erhan, 2017. "Frequency aspects of information transmission in a network of three western equity markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 933-946.
    18. Jamal Bouoiyour & Refk Selmi, 2015. "What Does Bitcoin Look Like?," Annals of Economics and Finance, Society for AEF, vol. 16(2), pages 449-492, November.
    19. Harald Schmidbauer & Angi Rosch & Erhan Uluceviz, 2016. "Frequency aspects of information transmission in a network of three Western equity markets," Koç University-TUSIAD Economic Research Forum Working Papers 1616, Koc University-TUSIAD Economic Research Forum.
    20. Sudipta Das, 2021. "The Time–Frequency Relationship between Oil Price, Stock Returns and Exchange Rate," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(2), pages 129-149, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:568:y:2021:i:c:s0378437120309845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.