IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v566y2021ics0378437120309286.html
   My bibliography  Save this article

A fund-stock network projection model

Author

Listed:
  • Zhang, Chuanzhe
  • Pang, Shaopeng
  • Yu, Hao
  • Han, Guozheng

Abstract

The equity fund is a mutual fund that invests principally in stocks, which can offer better returns and more adequate risk management. We propose a fund-stock network projection model to study the investment laws of the equity fund. This model allows us to calculate the importance of each stock, which can effectively quantify the relative investment strength of the equity fund in stocks. We studied the investment level, investment distribution and investment tendency of the equity fund based on the importance of stocks. The simulation results show that the investment level of the equity fund is better than the average investment level of the market. The investment distribution of the equity fund exhibits a near-power law distribution with fat tails. The equity fund is most biased towards investing in the finance industry, and adjusts the investment ratio of different industries according to the fluctuations of the stock market. Then an investment strategy is proposed based on the importance of stocks, which provides some references for investors.

Suggested Citation

  • Zhang, Chuanzhe & Pang, Shaopeng & Yu, Hao & Han, Guozheng, 2021. "A fund-stock network projection model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
  • Handle: RePEc:eee:phsmap:v:566:y:2021:i:c:s0378437120309286
    DOI: 10.1016/j.physa.2020.125630
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120309286
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125630?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pastor, Lubos & Stambaugh, Robert F., 2002. "Investing in equity mutual funds," Journal of Financial Economics, Elsevier, vol. 63(3), pages 351-380, March.
    2. Nobi, Ashadun & Maeng, Seong Eun & Ha, Gyeong Gyun & Lee, Jae Woo, 2014. "Effects of global financial crisis on network structure in a local stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 135-143.
    3. Daniel, Kent, et al, 1997. "Measuring Mutual Fund Performance with Characteristic-Based Benchmarks," Journal of Finance, American Finance Association, vol. 52(3), pages 1035-1058, July.
    4. M. Tumminello & T. Di Matteo & T. Aste & R. N. Mantegna, 2007. "Correlation based networks of equity returns sampled at different time horizons," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(2), pages 209-217, January.
    5. Garas, Antonios & Argyrakis, Panos, 2007. "Correlation study of the Athens Stock Exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 399-410.
    6. Huang, Wei-Qiang & Zhuang, Xin-Tian & Yao, Shuang, 2009. "A network analysis of the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2956-2964.
    7. Silva, Thiago Christiano & de Souza, Sergio Rubens Stancato & Tabak, Benjamin Miranda, 2016. "Structure and dynamics of the global financial network," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 218-234.
    8. Berk, Jonathan B. & van Binsbergen, Jules H., 2015. "Measuring skill in the mutual fund industry," Journal of Financial Economics, Elsevier, vol. 118(1), pages 1-20.
    9. Pástor, Ľuboš & Stambaugh, Robert F. & Taylor, Lucian A., 2015. "Scale and skill in active management," Journal of Financial Economics, Elsevier, vol. 116(1), pages 23-45.
    10. Wang, Yong-Li & Zhou, Tao & Shi, Jian-Jun & Wang, Jian & He, Da-Ren, 2009. "Empirical analysis of dependence between stations in Chinese railway network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2949-2955.
    11. Tse, Chi K. & Liu, Jing & Lau, Francis C.M., 2010. "A network perspective of the stock market," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 659-667, September.
    12. Heiberger, Raphael H., 2014. "Stock network stability in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 376-381.
    13. Sunil Kumar & Nivedita Deo, 2012. "Correlation, Network and Multifractal Analysis of Global Financial Indices," Papers 1202.0409, arXiv.org.
    14. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2010. "Complex stock trading network among investors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4929-4941.
    15. Long, Wen & Guan, Lijing & Shen, Jiangjian & Song, Linqiu & Cui, Lingxiao, 2017. "A complex network for studying the transmission mechanisms in stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 345-357.
    16. Nier, Erlend & Yang, Jing & Yorulmazer, Tanju & Alentorn, Amadeo, 2007. "Network models and financial stability," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 2033-2060, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    2. Výrost, Tomáš & Lyócsa, Štefan & Baumöhl, Eduard, 2015. "Granger causality stock market networks: Temporal proximity and preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 262-276.
    3. Huang, Wei-Qiang & Zhuang, Xin-Tian & Yao, Shuang & Uryasev, Stan, 2016. "A financial network perspective of financial institutions’ systemic risk contributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 183-196.
    4. Nie, Chun-Xiao & Song, Fu-Tie, 2018. "Constructing financial network based on PMFG and threshold method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 104-113.
    5. Swasti Gupta‐Mukherjee & Ankur Pareek, 2020. "Limited attention and portfolio choice: The impact of attention allocation on mutual fund performance," Financial Management, Financial Management Association International, vol. 49(4), pages 1083-1125, December.
    6. Yong Tang & Jason Jie Xiong & Zi-Yang Jia & Yi-Cheng Zhang, 2018. "Complexities in Financial Network Topological Dynamics: Modeling of Emerging and Developed Stock Markets," Complexity, Hindawi, vol. 2018, pages 1-31, November.
    7. Bing Li, 2017. "Network Evolution of the Chinese Stock Market: A Study based on the CSI 300 Index," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 7(3), pages 1-5.
    8. Coletti, Paolo, 2016. "Comparing minimum spanning trees of the Italian stock market using returns and volumes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 246-261.
    9. Chun-Xiao Nie, 2021. "Studying the correlation structure based on market geometry," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(2), pages 411-441, April.
    10. Hosseini, Seyed Soheil & Wormald, Nick & Tian, Tianhai, 2021. "A Weight-based Information Filtration Algorithm for Stock-correlation Networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    11. Zhang, Peipei & Sun, Mei & Zhang, Xiaoling & Gao, Cuixia, 2017. "Who are leading the change? The impact of China’s leading PV enterprises: A complex network analysis," Applied Energy, Elsevier, vol. 207(C), pages 477-493.
    12. Nie, Chun-Xiao & Song, Fu-Tie, 2018. "Analyzing the stock market based on the structure of kNN network," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 148-159.
    13. Haiming Long & Ji Zhang & Nengyu Tang, 2017. "Does network topology influence systemic risk contribution? A perspective from the industry indices in Chinese stock market," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-19, July.
    14. Clemens Sialm & Hanjiang Zhang, 2020. "Tax‐Efficient Asset Management: Evidence from Equity Mutual Funds," Journal of Finance, American Finance Association, vol. 75(2), pages 735-777, April.
    15. Peralta, Gustavo & Zareei, Abalfazl, 2016. "A network approach to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 38(PA), pages 157-180.
    16. Gustavo Peralta, 2015. "Network-based Measures as Leading Indicators of Market Instability: The case of the Spanish Stock," CNMV Working Papers CNMV Working Papers no 59, CNMV- Spanish Securities Markets Commission - Research and Statistics Department.
    17. Feldman, David & Saxena, Konark & Xu, Jingrui, 2020. "Is the active fund management industry concentrated enough?," Journal of Financial Economics, Elsevier, vol. 136(1), pages 23-43.
    18. Li, Jianxuan & Shi, Yingying & Cao, Guangxi, 2018. "Topology structure based on detrended cross-correlation coefficient of exchange rate network of the belt and road countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1140-1151.
    19. Lettau, Martin & Ludvigson, Sydney & Manoel, Paulo, 2018. "Characteristics of Mutual Fund Portfolios: Where Are the Value Funds?," CEPR Discussion Papers 13395, C.E.P.R. Discussion Papers.
    20. Jae Woo Lee & Ashadun Nobi, 2018. "State and Network Structures of Stock Markets around the Global Financial Crisis," Papers 1806.04363, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:566:y:2021:i:c:s0378437120309286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.