IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v565y2021ics0378437120308748.html
   My bibliography  Save this article

Single-molecule tracking measurement of PDMS layer during curing process

Author

Listed:
  • Iwao, Ryo
  • Yamaguchi, Hiroki
  • Niimi, Tomohide
  • Matsuda, Yu

Abstract

The curing process of poly(dimethylsiloxane) (PDMS) was microscopically investigated by the single-molecule tracking method based on the diffusion motion of fluorescent dye molecules adding to the PDMS layer stored at a temperature of 308K. The PDMS layer was completely cured at 900 min after adding a curing agent. We compared the time- and ensemble-averaged mean square displacements (MSDs) of the tracked molecules at 90, 510, and 900 min after adding the curing agent into the PDMS layer. The discrepancies were observed between the time- and ensemble-averaged MSDs, indicating weak ergodicity breaking. The spatially averaged diffusion coefficient exhibited a two-step decrease: first step was rapid decrease suggesting the extent of crosslinking, and second step was slow one suggesting the increase of crosslink density. The single-molecule trajectory scale analysis revealed the heterogeneous distribution of the diffusion coefficient. By calculating the heat map from the slope of moment scaling spectrum (MSS) of each single-molecule trajectory, cluster structures were recognized. The spatial correlation of the slope of MSS decreased with the time elapsed. These results suggested the existence of the heterogeneous structure in the PDMS layer during the curing process.

Suggested Citation

  • Iwao, Ryo & Yamaguchi, Hiroki & Niimi, Tomohide & Matsuda, Yu, 2021. "Single-molecule tracking measurement of PDMS layer during curing process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
  • Handle: RePEc:eee:phsmap:v:565:y:2021:i:c:s0378437120308748
    DOI: 10.1016/j.physa.2020.125576
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120308748
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125576?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:565:y:2021:i:c:s0378437120308748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.